| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evl1addd.q | ⊢ 𝑂  =  ( eval1 ‘ 𝑅 ) | 
						
							| 2 |  | evl1addd.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | evl1addd.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | evl1addd.u | ⊢ 𝑈  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | evl1addd.1 | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 6 |  | evl1addd.2 | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | evl1addd.3 | ⊢ ( 𝜑  →  ( 𝑀  ∈  𝑈  ∧  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  =  𝑉 ) ) | 
						
							| 8 |  | evl1addd.4 | ⊢ ( 𝜑  →  ( 𝑁  ∈  𝑈  ∧  ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 )  =  𝑊 ) ) | 
						
							| 9 |  | evl1addd.g | ⊢  ✚   =  ( +g ‘ 𝑃 ) | 
						
							| 10 |  | evl1addd.a | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑅  ↑s  𝐵 )  =  ( 𝑅  ↑s  𝐵 ) | 
						
							| 12 | 1 2 11 3 | evl1rhm | ⊢ ( 𝑅  ∈  CRing  →  𝑂  ∈  ( 𝑃  RingHom  ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  𝑂  ∈  ( 𝑃  RingHom  ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 14 |  | rhmghm | ⊢ ( 𝑂  ∈  ( 𝑃  RingHom  ( 𝑅  ↑s  𝐵 ) )  →  𝑂  ∈  ( 𝑃  GrpHom  ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  𝑂  ∈  ( 𝑃  GrpHom  ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 16 |  | ghmgrp1 | ⊢ ( 𝑂  ∈  ( 𝑃  GrpHom  ( 𝑅  ↑s  𝐵 ) )  →  𝑃  ∈  Grp ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝑃  ∈  Grp ) | 
						
							| 18 | 7 | simpld | ⊢ ( 𝜑  →  𝑀  ∈  𝑈 ) | 
						
							| 19 | 8 | simpld | ⊢ ( 𝜑  →  𝑁  ∈  𝑈 ) | 
						
							| 20 | 4 9 | grpcl | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝑀  ∈  𝑈  ∧  𝑁  ∈  𝑈 )  →  ( 𝑀  ✚  𝑁 )  ∈  𝑈 ) | 
						
							| 21 | 17 18 19 20 | syl3anc | ⊢ ( 𝜑  →  ( 𝑀  ✚  𝑁 )  ∈  𝑈 ) | 
						
							| 22 |  | eqid | ⊢ ( +g ‘ ( 𝑅  ↑s  𝐵 ) )  =  ( +g ‘ ( 𝑅  ↑s  𝐵 ) ) | 
						
							| 23 | 4 9 22 | ghmlin | ⊢ ( ( 𝑂  ∈  ( 𝑃  GrpHom  ( 𝑅  ↑s  𝐵 ) )  ∧  𝑀  ∈  𝑈  ∧  𝑁  ∈  𝑈 )  →  ( 𝑂 ‘ ( 𝑀  ✚  𝑁 ) )  =  ( ( 𝑂 ‘ 𝑀 ) ( +g ‘ ( 𝑅  ↑s  𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) ) | 
						
							| 24 | 15 18 19 23 | syl3anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝑀  ✚  𝑁 ) )  =  ( ( 𝑂 ‘ 𝑀 ) ( +g ‘ ( 𝑅  ↑s  𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ ( 𝑅  ↑s  𝐵 ) )  =  ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) | 
						
							| 26 | 3 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 28 | 4 25 | rhmf | ⊢ ( 𝑂  ∈  ( 𝑃  RingHom  ( 𝑅  ↑s  𝐵 ) )  →  𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 29 | 13 28 | syl | ⊢ ( 𝜑  →  𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 30 | 29 18 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑀 )  ∈  ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 31 | 29 19 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑁 )  ∈  ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 32 | 11 25 5 27 30 31 10 22 | pwsplusgval | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝑀 ) ( +g ‘ ( 𝑅  ↑s  𝐵 ) ) ( 𝑂 ‘ 𝑁 ) )  =  ( ( 𝑂 ‘ 𝑀 )  ∘f   +  ( 𝑂 ‘ 𝑁 ) ) ) | 
						
							| 33 | 24 32 | eqtrd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝑀  ✚  𝑁 ) )  =  ( ( 𝑂 ‘ 𝑀 )  ∘f   +  ( 𝑂 ‘ 𝑁 ) ) ) | 
						
							| 34 | 33 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝑀  ✚  𝑁 ) ) ‘ 𝑌 )  =  ( ( ( 𝑂 ‘ 𝑀 )  ∘f   +  ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 ) ) | 
						
							| 35 | 11 3 25 5 27 30 | pwselbas | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑀 ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 36 | 35 | ffnd | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑀 )  Fn  𝐵 ) | 
						
							| 37 | 11 3 25 5 27 31 | pwselbas | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑁 ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 38 | 37 | ffnd | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑁 )  Fn  𝐵 ) | 
						
							| 39 |  | fnfvof | ⊢ ( ( ( ( 𝑂 ‘ 𝑀 )  Fn  𝐵  ∧  ( 𝑂 ‘ 𝑁 )  Fn  𝐵 )  ∧  ( 𝐵  ∈  V  ∧  𝑌  ∈  𝐵 ) )  →  ( ( ( 𝑂 ‘ 𝑀 )  ∘f   +  ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 )  =  ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  +  ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) ) | 
						
							| 40 | 36 38 27 6 39 | syl22anc | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ 𝑀 )  ∘f   +  ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 )  =  ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  +  ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) ) | 
						
							| 41 | 7 | simprd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  =  𝑉 ) | 
						
							| 42 | 8 | simprd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 )  =  𝑊 ) | 
						
							| 43 | 41 42 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  +  ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) )  =  ( 𝑉  +  𝑊 ) ) | 
						
							| 44 | 34 40 43 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝑀  ✚  𝑁 ) ) ‘ 𝑌 )  =  ( 𝑉  +  𝑊 ) ) | 
						
							| 45 | 21 44 | jca | ⊢ ( 𝜑  →  ( ( 𝑀  ✚  𝑁 )  ∈  𝑈  ∧  ( ( 𝑂 ‘ ( 𝑀  ✚  𝑁 ) ) ‘ 𝑌 )  =  ( 𝑉  +  𝑊 ) ) ) |