Step |
Hyp |
Ref |
Expression |
1 |
|
evl1addd.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1addd.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
evl1addd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
evl1addd.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
5 |
|
evl1addd.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
evl1addd.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
evl1addd.3 |
⊢ ( 𝜑 → ( 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) ) |
8 |
|
evl1addd.4 |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) = 𝑊 ) ) |
9 |
|
evl1addd.g |
⊢ ✚ = ( +g ‘ 𝑃 ) |
10 |
|
evl1addd.a |
⊢ + = ( +g ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
12 |
1 2 11 3
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
14 |
|
rhmghm |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐵 ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐵 ) ) ) |
16 |
|
ghmgrp1 |
⊢ ( 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐵 ) ) → 𝑃 ∈ Grp ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
18 |
7
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
19 |
8
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ 𝑈 ) |
20 |
4 9
|
grpcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈 ) → ( 𝑀 ✚ 𝑁 ) ∈ 𝑈 ) |
21 |
17 18 19 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ✚ 𝑁 ) ∈ 𝑈 ) |
22 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ↑s 𝐵 ) ) = ( +g ‘ ( 𝑅 ↑s 𝐵 ) ) |
23 |
4 9 22
|
ghmlin |
⊢ ( ( 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐵 ) ) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈 ) → ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ( +g ‘ ( 𝑅 ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) ) |
24 |
15 18 19 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ( +g ‘ ( 𝑅 ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
26 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
27 |
26
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
28 |
4 25
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
29 |
13 28
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
30 |
29 18
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
31 |
29 19
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑁 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
32 |
11 25 5 27 30 31 10 22
|
pwsplusgval |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ( +g ‘ ( 𝑅 ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ∘f + ( 𝑂 ‘ 𝑁 ) ) ) |
33 |
24 32
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ∘f + ( 𝑂 ‘ 𝑁 ) ) ) |
34 |
33
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ 𝑀 ) ∘f + ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 ) ) |
35 |
11 3 25 5 27 30
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) : 𝐵 ⟶ 𝐵 ) |
36 |
35
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) Fn 𝐵 ) |
37 |
11 3 25 5 27 31
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑁 ) : 𝐵 ⟶ 𝐵 ) |
38 |
37
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑁 ) Fn 𝐵 ) |
39 |
|
fnfvof |
⊢ ( ( ( ( 𝑂 ‘ 𝑀 ) Fn 𝐵 ∧ ( 𝑂 ‘ 𝑁 ) Fn 𝐵 ) ∧ ( 𝐵 ∈ V ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑂 ‘ 𝑀 ) ∘f + ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) + ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
40 |
36 38 27 6 39
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝑀 ) ∘f + ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) + ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
41 |
7
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) |
42 |
8
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) = 𝑊 ) |
43 |
41 42
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) + ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) = ( 𝑉 + 𝑊 ) ) |
44 |
34 40 43
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝑌 ) = ( 𝑉 + 𝑊 ) ) |
45 |
21 44
|
jca |
⊢ ( 𝜑 → ( ( 𝑀 ✚ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝑌 ) = ( 𝑉 + 𝑊 ) ) ) |