Step |
Hyp |
Ref |
Expression |
1 |
|
evl1addd.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1addd.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
evl1addd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
evl1addd.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
5 |
|
evl1addd.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
evl1addd.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
evl1addd.3 |
⊢ ( 𝜑 → ( 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) ) |
8 |
|
evl1expd.f |
⊢ ∙ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
9 |
|
evl1expd.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
10 |
|
evl1expd.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
11 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
13 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
14 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
15 |
14
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
16 |
12 13 15
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
17 |
7
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
18 |
14 4
|
mgpbas |
⊢ 𝑈 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
19 |
18 8
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ 𝑈 ) → ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ) |
20 |
16 10 17 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ) |
21 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
22 |
1 2 21 3
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
23 |
5 22
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
24 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) = ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) |
25 |
14 24
|
rhmmhm |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 ∈ ( ( mulGrp ‘ 𝑃 ) MndHom ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ) |
26 |
23 25
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( ( mulGrp ‘ 𝑃 ) MndHom ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ) |
27 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
28 |
18 8 27
|
mhmmulg |
⊢ ( ( 𝑂 ∈ ( ( mulGrp ‘ 𝑃 ) MndHom ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ 𝑈 ) → ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ( 𝑂 ‘ 𝑀 ) ) ) |
29 |
26 10 17 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ( 𝑂 ‘ 𝑀 ) ) ) |
30 |
|
eqid |
⊢ ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) = ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) |
31 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ) |
32 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
33 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
34 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) |
35 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
36 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) |
37 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
38 |
|
eqid |
⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) |
39 |
21 33 34 24 35 36 37 38
|
pwsmgp |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐵 ∈ V ) → ( ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ∧ ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) ) |
40 |
5 32 39
|
sylancl |
⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ∧ ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) ) |
41 |
40
|
simpld |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
42 |
|
ssv |
⊢ ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ⊆ V |
43 |
42
|
a1i |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ⊆ V ) |
44 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) 𝑦 ) ∈ V ) |
45 |
40
|
simprd |
⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
46 |
45
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) 𝑦 ) ) |
47 |
27 30 31 41 43 44 46
|
mulgpropd |
⊢ ( 𝜑 → ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
48 |
47
|
oveqd |
⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ( 𝑂 ‘ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ) |
49 |
29 48
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ) |
50 |
49
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ‘ 𝑌 ) ) |
51 |
33
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
52 |
12 51
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
53 |
32
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
54 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
55 |
4 54
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
56 |
23 55
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
57 |
56 17
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
58 |
24 54
|
mgpbas |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
59 |
58 41
|
syl5eq |
⊢ ( 𝜑 → ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
60 |
57 59
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
61 |
34 36 30 9
|
pwsmulg |
⊢ ( ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐵 ∈ V ) ∧ ( 𝑁 ∈ ℕ0 ∧ ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
62 |
52 53 10 60 6 61
|
syl23anc |
⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
63 |
7
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) |
64 |
63
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑁 ↑ 𝑉 ) ) |
65 |
62 64
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ 𝑉 ) ) |
66 |
50 65
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ 𝑉 ) ) |
67 |
20 66
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ 𝑉 ) ) ) |