Step |
Hyp |
Ref |
Expression |
1 |
|
evl1fval.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1fval.q |
⊢ 𝑄 = ( 1o eval 𝑅 ) |
3 |
|
evl1fval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
fvexd |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) ∈ V ) |
5 |
|
id |
⊢ ( 𝑏 = ( Base ‘ 𝑟 ) → 𝑏 = ( Base ‘ 𝑟 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
7 |
6 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
8 |
5 7
|
sylan9eqr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → 𝑏 = 𝐵 ) |
9 |
8
|
oveq1d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑏 ↑m 1o ) = ( 𝐵 ↑m 1o ) ) |
10 |
8 9
|
oveq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) = ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
11 |
8
|
mpteq1d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) |
12 |
11
|
coeq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
13 |
10 12
|
mpteq12dv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) |
14 |
|
simpl |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) |
15 |
14
|
oveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 1o eval 𝑟 ) = ( 1o eval 𝑅 ) ) |
16 |
15 2
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 1o eval 𝑟 ) = 𝑄 ) |
17 |
13 16
|
coeq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ) |
18 |
4 17
|
csbied |
⊢ ( 𝑟 = 𝑅 → ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ) |
19 |
|
df-evl1 |
⊢ eval1 = ( 𝑟 ∈ V ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) ) |
20 |
|
ovex |
⊢ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ∈ V |
21 |
20
|
mptex |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ V |
22 |
2
|
ovexi |
⊢ 𝑄 ∈ V |
23 |
21 22
|
coex |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ∈ V |
24 |
18 19 23
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( eval1 ‘ 𝑅 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ) |
25 |
1 24
|
syl5eq |
⊢ ( 𝑅 ∈ V → 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ) |
26 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( eval1 ‘ 𝑅 ) = ∅ ) |
27 |
1 26
|
syl5eq |
⊢ ( ¬ 𝑅 ∈ V → 𝑂 = ∅ ) |
28 |
|
co02 |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ∅ ) = ∅ |
29 |
27 28
|
eqtr4di |
⊢ ( ¬ 𝑅 ∈ V → 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ∅ ) ) |
30 |
|
df-evl |
⊢ eval = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑖 evalSub 𝑟 ) ‘ ( Base ‘ 𝑟 ) ) ) |
31 |
30
|
reldmmpo |
⊢ Rel dom eval |
32 |
31
|
ovprc2 |
⊢ ( ¬ 𝑅 ∈ V → ( 1o eval 𝑅 ) = ∅ ) |
33 |
2 32
|
syl5eq |
⊢ ( ¬ 𝑅 ∈ V → 𝑄 = ∅ ) |
34 |
33
|
coeq2d |
⊢ ( ¬ 𝑅 ∈ V → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ∅ ) ) |
35 |
29 34
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ) |
36 |
25 35
|
pm2.61i |
⊢ 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) |