Metamath Proof Explorer


Theorem evl1fval1

Description: Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019)

Ref Expression
Hypotheses evl1fval1.q 𝑄 = ( eval1𝑅 )
evl1fval1.b 𝐵 = ( Base ‘ 𝑅 )
Assertion evl1fval1 𝑄 = ( 𝑅 evalSub1 𝐵 )

Proof

Step Hyp Ref Expression
1 evl1fval1.q 𝑄 = ( eval1𝑅 )
2 evl1fval1.b 𝐵 = ( Base ‘ 𝑅 )
3 1 2 evl1fval1lem ( 𝑅 ∈ V → 𝑄 = ( 𝑅 evalSub1 𝐵 ) )
4 fvprc ( ¬ 𝑅 ∈ V → ( eval1𝑅 ) = ∅ )
5 1 4 syl5eq ( ¬ 𝑅 ∈ V → 𝑄 = ∅ )
6 reldmevls1 Rel dom evalSub1
7 6 ovprc1 ( ¬ 𝑅 ∈ V → ( 𝑅 evalSub1 𝐵 ) = ∅ )
8 5 7 eqtr4d ( ¬ 𝑅 ∈ V → 𝑄 = ( 𝑅 evalSub1 𝐵 ) )
9 3 8 pm2.61i 𝑄 = ( 𝑅 evalSub1 𝐵 )