Step |
Hyp |
Ref |
Expression |
1 |
|
evl1gsummon.q |
⊢ 𝑄 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1gsummon.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
evl1gsummon.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) |
4 |
|
evl1gsummon.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
5 |
|
evl1gsummon.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
6 |
|
evl1gsummon.h |
⊢ 𝐻 = ( mulGrp ‘ 𝑅 ) |
7 |
|
evl1gsummon.e |
⊢ 𝐸 = ( .g ‘ 𝐻 ) |
8 |
|
evl1gsummon.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) |
9 |
|
evl1gsummon.p |
⊢ ↑ = ( .g ‘ 𝐺 ) |
10 |
|
evl1gsummon.t1 |
⊢ × = ( ·𝑠 ‘ 𝑊 ) |
11 |
|
evl1gsummon.t2 |
⊢ · = ( .r ‘ 𝑅 ) |
12 |
|
evl1gsummon.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
13 |
|
evl1gsummon.a |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑀 𝐴 ∈ 𝐾 ) |
14 |
|
evl1gsummon.m |
⊢ ( 𝜑 → 𝑀 ⊆ ℕ0 ) |
15 |
|
evl1gsummon.f |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
16 |
|
evl1gsummon.n |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑀 𝑁 ∈ ℕ0 ) |
17 |
|
evl1gsummon.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
18 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐾 ) = ( 𝑅 ↑s 𝐾 ) |
19 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
20 |
12 19
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
21 |
3
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ LMod ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝑊 ∈ LMod ) |
24 |
13
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝐴 ∈ 𝐾 ) |
25 |
3
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
26 |
12 25
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
28 |
2 27
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
30 |
24 29
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
31 |
3
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ Ring ) |
32 |
20 31
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
33 |
8
|
ringmgp |
⊢ ( 𝑊 ∈ Ring → 𝐺 ∈ Mnd ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝐺 ∈ Mnd ) |
36 |
16
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝑁 ∈ ℕ0 ) |
37 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝑅 ∈ Ring ) |
38 |
5 3 4
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝑋 ∈ 𝐵 ) |
40 |
8 4
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
41 |
40 9
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ↑ 𝑋 ) ∈ 𝐵 ) |
42 |
35 36 39 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( 𝑁 ↑ 𝑋 ) ∈ 𝐵 ) |
43 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
44 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
45 |
4 43 10 44
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑁 ↑ 𝑋 ) ∈ 𝐵 ) → ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ∈ 𝐵 ) |
46 |
23 30 42 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ∈ 𝐵 ) |
47 |
1 2 3 18 4 12 46 14 15 17
|
evl1gsumaddval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥 ∈ 𝑀 ↦ ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) ) ) ‘ 𝐶 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑀 ↦ ( ( 𝑄 ‘ ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) ‘ 𝐶 ) ) ) ) |
48 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝑅 ∈ CRing ) |
49 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝐶 ∈ 𝐾 ) |
50 |
1 3 8 5 2 9 48 36 10 24 49 6 7 11
|
evl1scvarpwval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( ( 𝑄 ‘ ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) ‘ 𝐶 ) = ( 𝐴 · ( 𝑁 𝐸 𝐶 ) ) ) |
51 |
50
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑀 ↦ ( ( 𝑄 ‘ ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) ‘ 𝐶 ) ) = ( 𝑥 ∈ 𝑀 ↦ ( 𝐴 · ( 𝑁 𝐸 𝐶 ) ) ) ) |
52 |
51
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑥 ∈ 𝑀 ↦ ( ( 𝑄 ‘ ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) ‘ 𝐶 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑀 ↦ ( 𝐴 · ( 𝑁 𝐸 𝐶 ) ) ) ) ) |
53 |
47 52
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥 ∈ 𝑀 ↦ ( 𝐴 × ( 𝑁 ↑ 𝑋 ) ) ) ) ) ‘ 𝐶 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑀 ↦ ( 𝐴 · ( 𝑁 𝐸 𝐶 ) ) ) ) ) |