Metamath Proof Explorer


Theorem evl1maprhm

Description: The function F mapping polynomials p to their evaluation at a given point X is a ring homomorphism. (Contributed by metakunt, 19-May-2025)

Ref Expression
Hypotheses evl1maprhm.q 𝑂 = ( eval1𝑅 )
evl1maprhm.p 𝑃 = ( Poly1𝑅 )
evl1maprhm.b 𝐵 = ( Base ‘ 𝑅 )
evl1maprhm.u 𝑈 = ( Base ‘ 𝑃 )
evl1maprhm.r ( 𝜑𝑅 ∈ CRing )
evl1maprhm.y ( 𝜑𝑋𝐵 )
evl1maprhm.f 𝐹 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝑋 ) )
Assertion evl1maprhm ( 𝜑𝐹 ∈ ( 𝑃 RingHom 𝑅 ) )

Proof

Step Hyp Ref Expression
1 evl1maprhm.q 𝑂 = ( eval1𝑅 )
2 evl1maprhm.p 𝑃 = ( Poly1𝑅 )
3 evl1maprhm.b 𝐵 = ( Base ‘ 𝑅 )
4 evl1maprhm.u 𝑈 = ( Base ‘ 𝑃 )
5 evl1maprhm.r ( 𝜑𝑅 ∈ CRing )
6 evl1maprhm.y ( 𝜑𝑋𝐵 )
7 evl1maprhm.f 𝐹 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝑋 ) )
8 7 a1i ( 𝜑𝐹 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝑋 ) ) )
9 ssidd ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) )
10 5 elexd ( 𝜑𝑅 ∈ V )
11 5 crngringd ( 𝜑𝑅 ∈ Ring )
12 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
13 12 subrgid ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
14 11 13 syl ( 𝜑 → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) )
15 14 elexd ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V )
16 eqid ( 𝑅s ( Base ‘ 𝑅 ) ) = ( 𝑅s ( Base ‘ 𝑅 ) )
17 16 12 ressid2 ( ( ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ∧ 𝑅 ∈ V ∧ ( Base ‘ 𝑅 ) ∈ V ) → ( 𝑅s ( Base ‘ 𝑅 ) ) = 𝑅 )
18 9 10 15 17 syl3anc ( 𝜑 → ( 𝑅s ( Base ‘ 𝑅 ) ) = 𝑅 )
19 eqcom ( ( 𝑅s ( Base ‘ 𝑅 ) ) = 𝑅𝑅 = ( 𝑅s ( Base ‘ 𝑅 ) ) )
20 19 imbi2i ( ( 𝜑 → ( 𝑅s ( Base ‘ 𝑅 ) ) = 𝑅 ) ↔ ( 𝜑𝑅 = ( 𝑅s ( Base ‘ 𝑅 ) ) ) )
21 18 20 mpbi ( 𝜑𝑅 = ( 𝑅s ( Base ‘ 𝑅 ) ) )
22 21 fveq2d ( 𝜑 → ( Poly1𝑅 ) = ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) )
23 2 22 eqtrid ( 𝜑𝑃 = ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) )
24 23 fveq2d ( 𝜑 → ( Base ‘ 𝑃 ) = ( Base ‘ ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) ) )
25 4 24 eqtrid ( 𝜑𝑈 = ( Base ‘ ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) ) )
26 1 12 evl1fval1 𝑂 = ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) )
27 26 a1i ( 𝜑𝑂 = ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) )
28 27 fveq1d ( 𝜑 → ( 𝑂𝑝 ) = ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) )
29 28 fveq1d ( 𝜑 → ( ( 𝑂𝑝 ) ‘ 𝑋 ) = ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) )
30 25 29 mpteq12dv ( 𝜑 → ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝑋 ) ) = ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) )
31 eqid ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) = ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) )
32 eqid ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) = ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) )
33 eqid ( Base ‘ ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) )
34 6 3 eleqtrdi ( 𝜑𝑋 ∈ ( Base ‘ 𝑅 ) )
35 eqid ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) = ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) )
36 31 32 12 33 5 14 34 35 evls1maprhm ( 𝜑 → ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) ∈ ( ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) RingHom 𝑅 ) )
37 30 36 eqeltrd ( 𝜑 → ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝑋 ) ) ∈ ( ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) RingHom 𝑅 ) )
38 2 a1i ( 𝜑𝑃 = ( Poly1𝑅 ) )
39 18 eqcomd ( 𝜑𝑅 = ( 𝑅s ( Base ‘ 𝑅 ) ) )
40 39 fveq2d ( 𝜑 → ( Poly1𝑅 ) = ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) )
41 38 40 eqtr2d ( 𝜑 → ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) = 𝑃 )
42 41 oveq1d ( 𝜑 → ( ( Poly1 ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) RingHom 𝑅 ) = ( 𝑃 RingHom 𝑅 ) )
43 37 42 eleqtrd ( 𝜑 → ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝑋 ) ) ∈ ( 𝑃 RingHom 𝑅 ) )
44 8 43 eqeltrd ( 𝜑𝐹 ∈ ( 𝑃 RingHom 𝑅 ) )