Step |
Hyp |
Ref |
Expression |
1 |
|
evl1maprhm.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1maprhm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
evl1maprhm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
evl1maprhm.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
5 |
|
evl1maprhm.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
evl1maprhm.y |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
evl1maprhm.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) ) |
9 |
|
ssidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
10 |
5
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
11 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
12
|
subrgid |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
14 |
11 13
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
15 |
14
|
elexd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
16 |
|
eqid |
⊢ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) |
17 |
16 12
|
ressid2 |
⊢ ( ( ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ∧ 𝑅 ∈ V ∧ ( Base ‘ 𝑅 ) ∈ V ) → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
18 |
9 10 15 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
19 |
|
eqcom |
⊢ ( ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ↔ 𝑅 = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
20 |
19
|
imbi2i |
⊢ ( ( 𝜑 → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) ↔ ( 𝜑 → 𝑅 = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) |
21 |
18 20
|
mpbi |
⊢ ( 𝜑 → 𝑅 = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝜑 → ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) |
23 |
2 22
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ) |
25 |
4 24
|
eqtrid |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ) |
26 |
1 12
|
evl1fval1 |
⊢ 𝑂 = ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) |
27 |
26
|
a1i |
⊢ ( 𝜑 → 𝑂 = ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ) |
28 |
27
|
fveq1d |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑝 ) = ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ) |
29 |
28
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) |
30 |
25 29
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) = ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) ) |
31 |
|
eqid |
⊢ ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) = ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) |
32 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) = ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
33 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) |
34 |
6 3
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
35 |
|
eqid |
⊢ ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) = ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) |
36 |
31 32 12 33 5 14 34 35
|
evls1maprhm |
⊢ ( 𝜑 → ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) ∈ ( ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) RingHom 𝑅 ) ) |
37 |
30 36
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) ∈ ( ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) RingHom 𝑅 ) ) |
38 |
2
|
a1i |
⊢ ( 𝜑 → 𝑃 = ( Poly1 ‘ 𝑅 ) ) |
39 |
18
|
eqcomd |
⊢ ( 𝜑 → 𝑅 = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
40 |
39
|
fveq2d |
⊢ ( 𝜑 → ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) |
41 |
38 40
|
eqtr2d |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) = 𝑃 ) |
42 |
41
|
oveq1d |
⊢ ( 𝜑 → ( ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) RingHom 𝑅 ) = ( 𝑃 RingHom 𝑅 ) ) |
43 |
37 42
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) ∈ ( 𝑃 RingHom 𝑅 ) ) |
44 |
8 43
|
eqeltrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |