Step |
Hyp |
Ref |
Expression |
1 |
|
evl1addd.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1addd.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
evl1addd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
evl1addd.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
5 |
|
evl1addd.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
evl1addd.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
evl1addd.3 |
⊢ ( 𝜑 → ( 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) ) |
8 |
|
evl1addd.4 |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) = 𝑊 ) ) |
9 |
|
evl1muld.t |
⊢ ∙ = ( .r ‘ 𝑃 ) |
10 |
|
evl1muld.s |
⊢ · = ( .r ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
12 |
1 2 11 3
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
14 |
|
rhmrcl1 |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑃 ∈ Ring ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
16 |
7
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
17 |
8
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ 𝑈 ) |
18 |
4 9
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈 ) → ( 𝑀 ∙ 𝑁 ) ∈ 𝑈 ) |
19 |
15 16 17 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ∙ 𝑁 ) ∈ 𝑈 ) |
20 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ↑s 𝐵 ) ) = ( .r ‘ ( 𝑅 ↑s 𝐵 ) ) |
21 |
4 9 20
|
rhmmul |
⊢ ( ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈 ) → ( 𝑂 ‘ ( 𝑀 ∙ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ( .r ‘ ( 𝑅 ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) ) |
22 |
13 16 17 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 ∙ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ( .r ‘ ( 𝑅 ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) ) |
23 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
24 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
25 |
24
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
26 |
4 23
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
27 |
13 26
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
28 |
27 16
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
29 |
27 17
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑁 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
30 |
11 23 5 25 28 29 10 20
|
pwsmulrval |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ( .r ‘ ( 𝑅 ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ∘f · ( 𝑂 ‘ 𝑁 ) ) ) |
31 |
22 30
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 ∙ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ∘f · ( 𝑂 ‘ 𝑁 ) ) ) |
32 |
31
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 ∙ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ 𝑀 ) ∘f · ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 ) ) |
33 |
11 3 23 5 25 28
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) : 𝐵 ⟶ 𝐵 ) |
34 |
33
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) Fn 𝐵 ) |
35 |
11 3 23 5 25 29
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑁 ) : 𝐵 ⟶ 𝐵 ) |
36 |
35
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑁 ) Fn 𝐵 ) |
37 |
|
fnfvof |
⊢ ( ( ( ( 𝑂 ‘ 𝑀 ) Fn 𝐵 ∧ ( 𝑂 ‘ 𝑁 ) Fn 𝐵 ) ∧ ( 𝐵 ∈ V ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑂 ‘ 𝑀 ) ∘f · ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) · ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
38 |
34 36 25 6 37
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝑀 ) ∘f · ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) · ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
39 |
7
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) |
40 |
8
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) = 𝑊 ) |
41 |
39 40
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) · ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) = ( 𝑉 · 𝑊 ) ) |
42 |
32 38 41
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 ∙ 𝑁 ) ) ‘ 𝑌 ) = ( 𝑉 · 𝑊 ) ) |
43 |
19 42
|
jca |
⊢ ( 𝜑 → ( ( 𝑀 ∙ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑀 ∙ 𝑁 ) ) ‘ 𝑌 ) = ( 𝑉 · 𝑊 ) ) ) |