Step |
Hyp |
Ref |
Expression |
1 |
|
evl1rhm.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1rhm.w |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
evl1rhm.t |
⊢ 𝑇 = ( 𝑅 ↑s 𝐵 ) |
4 |
|
evl1rhm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
6 |
1 5 4
|
evl1fval |
⊢ 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
8 |
4 3 7
|
evls1rhmlem |
⊢ ( 𝑅 ∈ CRing → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ ( ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ) |
9 |
|
1on |
⊢ 1o ∈ On |
10 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
11 |
|
eqid |
⊢ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) |
12 |
5 4 10 11
|
evlrhm |
⊢ ( ( 1o ∈ On ∧ 𝑅 ∈ CRing ) → ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
13 |
9 12
|
mpan |
⊢ ( 𝑅 ∈ CRing → ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
14 |
|
eqidd |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) ) |
15 |
|
eqidd |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
16 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
18 |
2 16 17
|
ply1bas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
19 |
18
|
a1i |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
20 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
21 |
2 10 20
|
ply1plusg |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
22 |
21
|
a1i |
⊢ ( 𝑅 ∈ CRing → ( +g ‘ 𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) ) |
23 |
22
|
oveqdr |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
24 |
|
eqidd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) ) |
25 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
26 |
2 10 25
|
ply1mulr |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
27 |
26
|
a1i |
⊢ ( 𝑅 ∈ CRing → ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) ) |
28 |
27
|
oveqdr |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
29 |
|
eqidd |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) ) → ( 𝑥 ( .r ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) ) |
30 |
14 15 19 15 23 24 28 29
|
rhmpropd |
⊢ ( 𝑅 ∈ CRing → ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
31 |
13 30
|
eleqtrrd |
⊢ ( 𝑅 ∈ CRing → ( 1o eval 𝑅 ) ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
32 |
|
rhmco |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ ( ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ∧ ( 1o eval 𝑅 ) ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) ∈ ( 𝑃 RingHom 𝑇 ) ) |
33 |
8 31 32
|
syl2anc |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) ∈ ( 𝑃 RingHom 𝑇 ) ) |
34 |
6 33
|
eqeltrid |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom 𝑇 ) ) |