| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1sca.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 2 |
|
evl1sca.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
evl1sca.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
evl1sca.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 5 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 8 |
2 4 3 7
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ) |
| 9 |
6 8
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝐴 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ) |
| 10 |
|
ffvelcdm |
⊢ ( ( 𝐴 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 11 |
9 10
|
sylancom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 12 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
| 13 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 14 |
2 7
|
ply1bas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 15 |
1 12 3 13 14
|
evl1val |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( ( 1o eval 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 16 |
11 15
|
syldan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( ( 1o eval 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 17 |
2 4
|
ply1ascl |
⊢ 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |
| 18 |
3
|
ressid |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 20 |
19
|
oveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 1o mPoly 𝑅 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) ) |
| 22 |
17 21
|
eqtr4id |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝐴 = ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ) |
| 23 |
22
|
fveq1d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) = ( ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) |
| 24 |
23
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 1o eval 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) ) |
| 25 |
12 3
|
evlval |
⊢ ( 1o eval 𝑅 ) = ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
| 26 |
|
eqid |
⊢ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) = ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) |
| 27 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) |
| 28 |
|
eqid |
⊢ ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) = ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) |
| 29 |
|
1on |
⊢ 1o ∈ On |
| 30 |
29
|
a1i |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 1o ∈ On ) |
| 31 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
| 32 |
3
|
subrgid |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 33 |
6 32
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 34 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 35 |
25 26 27 3 28 30 31 33 34
|
evlssca |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 1o eval 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly ( 𝑅 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) |
| 36 |
24 35
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 1o eval 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) |
| 37 |
36
|
coeq1d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 1o eval 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 38 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 39 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
| 40 |
|
0ex |
⊢ ∅ ∈ V |
| 41 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) |
| 42 |
38 39 40 41
|
mapsnf1o3 |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 1o ) |
| 43 |
|
f1of |
⊢ ( ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 1o ) → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) |
| 44 |
42 43
|
mp1i |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) |
| 45 |
41
|
fmpt |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ↔ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) |
| 46 |
44 45
|
sylibr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ) |
| 47 |
|
eqidd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) |
| 48 |
|
fconstmpt |
⊢ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) = ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ 𝑋 ) |
| 49 |
48
|
a1i |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) = ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ 𝑋 ) ) |
| 50 |
|
eqidd |
⊢ ( 𝑥 = ( 1o × { 𝑦 } ) → 𝑋 = 𝑋 ) |
| 51 |
46 47 49 50
|
fmptcof |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
| 52 |
|
fconstmpt |
⊢ ( 𝐵 × { 𝑋 } ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) |
| 53 |
51 52
|
eqtr4di |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 54 |
16 37 53
|
3eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |