Step |
Hyp |
Ref |
Expression |
1 |
|
evl1sca.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1sca.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
evl1sca.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
evl1sca.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
5 |
|
evl1scad.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
6 |
|
evl1scad.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
evl1scad.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
evl1scad.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
10 |
2 4 3 5
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐵 ⟶ 𝑈 ) |
11 |
6 9 10
|
3syl |
⊢ ( 𝜑 → 𝐴 : 𝐵 ⟶ 𝑈 ) |
12 |
11 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ 𝑈 ) |
13 |
1 2 3 4
|
evl1sca |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
14 |
6 7 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝑌 ) = ( ( 𝐵 × { 𝑋 } ) ‘ 𝑌 ) ) |
16 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑋 } ) ‘ 𝑌 ) = 𝑋 ) |
17 |
7 8 16
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) ‘ 𝑌 ) = 𝑋 ) |
18 |
15 17
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝑌 ) = 𝑋 ) |
19 |
12 18
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝑌 ) = 𝑋 ) ) |