Step |
Hyp |
Ref |
Expression |
1 |
|
evl1var.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1var.v |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
3 |
|
evl1var.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
5 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
7 |
2 5 6
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
8 |
4 7
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
9 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
10 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
11 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
12 |
5 11 6
|
ply1bas |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
13 |
1 9 3 10 12
|
evl1val |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( 𝑂 ‘ 𝑋 ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
14 |
8 13
|
mpdan |
⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
15 |
|
df1o2 |
⊢ 1o = { ∅ } |
16 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
17 |
|
0ex |
⊢ ∅ ∈ V |
18 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) |
19 |
15 16 17 18
|
mapsncnv |
⊢ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) |
20 |
19
|
coeq2i |
⊢ ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) |
21 |
3
|
ressid |
⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
22 |
21
|
oveq2d |
⊢ ( 𝑅 ∈ CRing → ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) = ( 1o mVar 𝑅 ) ) |
23 |
22
|
fveq1d |
⊢ ( 𝑅 ∈ CRing → ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
24 |
2
|
vr1val |
⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
25 |
23 24
|
eqtr4di |
⊢ ( 𝑅 ∈ CRing → ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) = 𝑋 ) |
26 |
25
|
fveq2d |
⊢ ( 𝑅 ∈ CRing → ( ( 1o eval 𝑅 ) ‘ ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) ) = ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ) |
27 |
9 3
|
evlval |
⊢ ( 1o eval 𝑅 ) = ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
28 |
|
eqid |
⊢ ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) = ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) |
29 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) |
30 |
|
1on |
⊢ 1o ∈ On |
31 |
30
|
a1i |
⊢ ( 𝑅 ∈ CRing → 1o ∈ On ) |
32 |
|
id |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CRing ) |
33 |
3
|
subrgid |
⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
34 |
4 33
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
35 |
|
0lt1o |
⊢ ∅ ∈ 1o |
36 |
35
|
a1i |
⊢ ( 𝑅 ∈ CRing → ∅ ∈ 1o ) |
37 |
27 28 29 3 31 32 34 36
|
evlsvar |
⊢ ( 𝑅 ∈ CRing → ( ( 1o eval 𝑅 ) ‘ ( ( 1o mVar ( 𝑅 ↾s 𝐵 ) ) ‘ ∅ ) ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) |
38 |
26 37
|
eqtr3d |
⊢ ( 𝑅 ∈ CRing → ( ( 1o eval 𝑅 ) ‘ 𝑋 ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) |
39 |
38
|
coeq1d |
⊢ ( 𝑅 ∈ CRing → ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) ) |
40 |
20 39
|
eqtr3id |
⊢ ( 𝑅 ∈ CRing → ( ( ( 1o eval 𝑅 ) ‘ 𝑋 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) ) |
41 |
15 16 17 18
|
mapsnf1o2 |
⊢ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 |
42 |
|
f1ococnv2 |
⊢ ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 → ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( I ↾ 𝐵 ) ) |
43 |
41 42
|
mp1i |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ∘ ◡ ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑧 ‘ ∅ ) ) ) = ( I ↾ 𝐵 ) ) |
44 |
14 40 43
|
3eqtrd |
⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |