Step |
Hyp |
Ref |
Expression |
1 |
|
evl1addd.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
evl1addd.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
evl1addd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
evl1addd.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
5 |
|
evl1addd.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
evl1addd.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
evl1addd.3 |
⊢ ( 𝜑 → ( 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) ) |
8 |
|
evl1vsd.4 |
⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
9 |
|
evl1vsd.s |
⊢ ∙ = ( ·𝑠 ‘ 𝑃 ) |
10 |
|
evl1vsd.t |
⊢ · = ( .r ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
12 |
1 2 3 11 4 5 8 6
|
evl1scad |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ) ‘ 𝑌 ) = 𝑁 ) ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
14 |
1 2 3 4 5 6 12 7 13 10
|
evl1muld |
⊢ ( 𝜑 → ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ) |
15 |
2
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ AssAlg ) |
17 |
2
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
18 |
5 17
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
20 |
3 19
|
syl5eq |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
21 |
8 20
|
eleqtrd |
⊢ ( 𝜑 → 𝑁 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
22 |
7
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
23 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
24 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
25 |
11 23 24 4 13 9
|
asclmul1 |
⊢ ( ( 𝑃 ∈ AssAlg ∧ 𝑁 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑀 ∈ 𝑈 ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) = ( 𝑁 ∙ 𝑀 ) ) |
26 |
16 21 22 25
|
syl3anc |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) = ( 𝑁 ∙ 𝑀 ) ) |
27 |
26
|
eleq1d |
⊢ ( 𝜑 → ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ∈ 𝑈 ↔ ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ) ) |
28 |
26
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) = ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ) |
29 |
28
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) ) |
30 |
29
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ↔ ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ) |
31 |
27 30
|
anbi12d |
⊢ ( 𝜑 → ( ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ↔ ( ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ) ) |
32 |
14 31
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ) |