| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evl1addd.q | ⊢ 𝑂  =  ( eval1 ‘ 𝑅 ) | 
						
							| 2 |  | evl1addd.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | evl1addd.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | evl1addd.u | ⊢ 𝑈  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | evl1addd.1 | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 6 |  | evl1addd.2 | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | evl1addd.3 | ⊢ ( 𝜑  →  ( 𝑀  ∈  𝑈  ∧  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  =  𝑉 ) ) | 
						
							| 8 |  | evl1vsd.4 | ⊢ ( 𝜑  →  𝑁  ∈  𝐵 ) | 
						
							| 9 |  | evl1vsd.s | ⊢  ∙   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 10 |  | evl1vsd.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 12 | 1 2 3 11 4 5 8 6 | evl1scad | ⊢ ( 𝜑  →  ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 )  ∈  𝑈  ∧  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ) ‘ 𝑌 )  =  𝑁 ) ) | 
						
							| 13 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 14 | 1 2 3 4 5 6 12 7 13 10 | evl1muld | ⊢ ( 𝜑  →  ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 )  ∈  𝑈  ∧  ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 )  =  ( 𝑁  ·  𝑉 ) ) ) | 
						
							| 15 | 2 | ply1assa | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  AssAlg ) | 
						
							| 16 | 5 15 | syl | ⊢ ( 𝜑  →  𝑃  ∈  AssAlg ) | 
						
							| 17 | 2 | ply1sca | ⊢ ( 𝑅  ∈  CRing  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 18 | 5 17 | syl | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 20 | 3 19 | eqtrid | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 21 | 8 20 | eleqtrd | ⊢ ( 𝜑  →  𝑁  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 22 | 7 | simpld | ⊢ ( 𝜑  →  𝑀  ∈  𝑈 ) | 
						
							| 23 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 25 | 11 23 24 4 13 9 | asclmul1 | ⊢ ( ( 𝑃  ∈  AssAlg  ∧  𝑁  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝑀  ∈  𝑈 )  →  ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 )  =  ( 𝑁  ∙  𝑀 ) ) | 
						
							| 26 | 16 21 22 25 | syl3anc | ⊢ ( 𝜑  →  ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 )  =  ( 𝑁  ∙  𝑀 ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝜑  →  ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 )  ∈  𝑈  ↔  ( 𝑁  ∙  𝑀 )  ∈  𝑈 ) ) | 
						
							| 28 | 26 | fveq2d | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) )  =  ( 𝑂 ‘ ( 𝑁  ∙  𝑀 ) ) ) | 
						
							| 29 | 28 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 )  =  ( ( 𝑂 ‘ ( 𝑁  ∙  𝑀 ) ) ‘ 𝑌 ) ) | 
						
							| 30 | 29 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 )  =  ( 𝑁  ·  𝑉 )  ↔  ( ( 𝑂 ‘ ( 𝑁  ∙  𝑀 ) ) ‘ 𝑌 )  =  ( 𝑁  ·  𝑉 ) ) ) | 
						
							| 31 | 27 30 | anbi12d | ⊢ ( 𝜑  →  ( ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 )  ∈  𝑈  ∧  ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 )  =  ( 𝑁  ·  𝑉 ) )  ↔  ( ( 𝑁  ∙  𝑀 )  ∈  𝑈  ∧  ( ( 𝑂 ‘ ( 𝑁  ∙  𝑀 ) ) ‘ 𝑌 )  =  ( 𝑁  ·  𝑉 ) ) ) ) | 
						
							| 32 | 14 31 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑁  ∙  𝑀 )  ∈  𝑈  ∧  ( ( 𝑂 ‘ ( 𝑁  ∙  𝑀 ) ) ‘ 𝑌 )  =  ( 𝑁  ·  𝑉 ) ) ) |