Metamath Proof Explorer


Theorem evladdval

Description: Polynomial evaluation builder for addition. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses evladdval.q 𝑄 = ( 𝐼 eval 𝑆 )
evladdval.p 𝑃 = ( 𝐼 mPoly 𝑆 )
evladdval.k 𝐾 = ( Base ‘ 𝑆 )
evladdval.b 𝐵 = ( Base ‘ 𝑃 )
evladdval.g = ( +g𝑃 )
evladdval.f + = ( +g𝑆 )
evladdval.i ( 𝜑𝐼𝑍 )
evladdval.s ( 𝜑𝑆 ∈ CRing )
evladdval.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
evladdval.m ( 𝜑 → ( 𝑀𝐵 ∧ ( ( 𝑄𝑀 ) ‘ 𝐴 ) = 𝑉 ) )
evladdval.n ( 𝜑 → ( 𝑁𝐵 ∧ ( ( 𝑄𝑁 ) ‘ 𝐴 ) = 𝑊 ) )
Assertion evladdval ( 𝜑 → ( ( 𝑀 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 evladdval.q 𝑄 = ( 𝐼 eval 𝑆 )
2 evladdval.p 𝑃 = ( 𝐼 mPoly 𝑆 )
3 evladdval.k 𝐾 = ( Base ‘ 𝑆 )
4 evladdval.b 𝐵 = ( Base ‘ 𝑃 )
5 evladdval.g = ( +g𝑃 )
6 evladdval.f + = ( +g𝑆 )
7 evladdval.i ( 𝜑𝐼𝑍 )
8 evladdval.s ( 𝜑𝑆 ∈ CRing )
9 evladdval.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
10 evladdval.m ( 𝜑 → ( 𝑀𝐵 ∧ ( ( 𝑄𝑀 ) ‘ 𝐴 ) = 𝑉 ) )
11 evladdval.n ( 𝜑 → ( 𝑁𝐵 ∧ ( ( 𝑄𝑁 ) ‘ 𝐴 ) = 𝑊 ) )
12 eqid ( 𝑆s ( 𝐾m 𝐼 ) ) = ( 𝑆s ( 𝐾m 𝐼 ) )
13 1 3 2 12 evlrhm ( ( 𝐼𝑍𝑆 ∈ CRing ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
14 7 8 13 syl2anc ( 𝜑𝑄 ∈ ( 𝑃 RingHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
15 rhmghm ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) → 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
16 14 15 syl ( 𝜑𝑄 ∈ ( 𝑃 GrpHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
17 ghmgrp1 ( 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) → 𝑃 ∈ Grp )
18 16 17 syl ( 𝜑𝑃 ∈ Grp )
19 10 simpld ( 𝜑𝑀𝐵 )
20 11 simpld ( 𝜑𝑁𝐵 )
21 4 5 18 19 20 grpcld ( 𝜑 → ( 𝑀 𝑁 ) ∈ 𝐵 )
22 eqid ( +g ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) = ( +g ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) )
23 4 5 22 ghmlin ( ( 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) ∧ 𝑀𝐵𝑁𝐵 ) → ( 𝑄 ‘ ( 𝑀 𝑁 ) ) = ( ( 𝑄𝑀 ) ( +g ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) ( 𝑄𝑁 ) ) )
24 16 19 20 23 syl3anc ( 𝜑 → ( 𝑄 ‘ ( 𝑀 𝑁 ) ) = ( ( 𝑄𝑀 ) ( +g ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) ( 𝑄𝑁 ) ) )
25 eqid ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) = ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) )
26 ovexd ( 𝜑 → ( 𝐾m 𝐼 ) ∈ V )
27 4 25 rhmf ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
28 14 27 syl ( 𝜑𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
29 28 19 ffvelcdmd ( 𝜑 → ( 𝑄𝑀 ) ∈ ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
30 28 20 ffvelcdmd ( 𝜑 → ( 𝑄𝑁 ) ∈ ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
31 12 25 8 26 29 30 6 22 pwsplusgval ( 𝜑 → ( ( 𝑄𝑀 ) ( +g ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) ( 𝑄𝑁 ) ) = ( ( 𝑄𝑀 ) ∘f + ( 𝑄𝑁 ) ) )
32 24 31 eqtrd ( 𝜑 → ( 𝑄 ‘ ( 𝑀 𝑁 ) ) = ( ( 𝑄𝑀 ) ∘f + ( 𝑄𝑁 ) ) )
33 32 fveq1d ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄𝑀 ) ∘f + ( 𝑄𝑁 ) ) ‘ 𝐴 ) )
34 12 3 25 8 26 29 pwselbas ( 𝜑 → ( 𝑄𝑀 ) : ( 𝐾m 𝐼 ) ⟶ 𝐾 )
35 34 ffnd ( 𝜑 → ( 𝑄𝑀 ) Fn ( 𝐾m 𝐼 ) )
36 12 3 25 8 26 30 pwselbas ( 𝜑 → ( 𝑄𝑁 ) : ( 𝐾m 𝐼 ) ⟶ 𝐾 )
37 36 ffnd ( 𝜑 → ( 𝑄𝑁 ) Fn ( 𝐾m 𝐼 ) )
38 fnfvof ( ( ( ( 𝑄𝑀 ) Fn ( 𝐾m 𝐼 ) ∧ ( 𝑄𝑁 ) Fn ( 𝐾m 𝐼 ) ) ∧ ( ( 𝐾m 𝐼 ) ∈ V ∧ 𝐴 ∈ ( 𝐾m 𝐼 ) ) ) → ( ( ( 𝑄𝑀 ) ∘f + ( 𝑄𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐴 ) + ( ( 𝑄𝑁 ) ‘ 𝐴 ) ) )
39 35 37 26 9 38 syl22anc ( 𝜑 → ( ( ( 𝑄𝑀 ) ∘f + ( 𝑄𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐴 ) + ( ( 𝑄𝑁 ) ‘ 𝐴 ) ) )
40 10 simprd ( 𝜑 → ( ( 𝑄𝑀 ) ‘ 𝐴 ) = 𝑉 )
41 11 simprd ( 𝜑 → ( ( 𝑄𝑁 ) ‘ 𝐴 ) = 𝑊 )
42 40 41 oveq12d ( 𝜑 → ( ( ( 𝑄𝑀 ) ‘ 𝐴 ) + ( ( 𝑄𝑁 ) ‘ 𝐴 ) ) = ( 𝑉 + 𝑊 ) )
43 33 39 42 3eqtrd ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) )
44 21 43 jca ( 𝜑 → ( ( 𝑀 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) ) )