Step |
Hyp |
Ref |
Expression |
1 |
|
evladdval.q |
⊢ 𝑄 = ( 𝐼 eval 𝑆 ) |
2 |
|
evladdval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) |
3 |
|
evladdval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
4 |
|
evladdval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
evladdval.g |
⊢ ✚ = ( +g ‘ 𝑃 ) |
6 |
|
evladdval.f |
⊢ + = ( +g ‘ 𝑆 ) |
7 |
|
evladdval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) |
8 |
|
evladdval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
evladdval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
10 |
|
evladdval.m |
⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) |
11 |
|
evladdval.n |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) ) |
12 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) |
13 |
1 3 2 12
|
evlrhm |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
14 |
7 8 13
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
15 |
|
rhmghm |
⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
17 |
|
ghmgrp1 |
⊢ ( 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑃 ∈ Grp ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
19 |
10
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
20 |
11
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
21 |
4 5 18 19 20
|
grpcld |
⊢ ( 𝜑 → ( 𝑀 ✚ 𝑁 ) ∈ 𝐵 ) |
22 |
|
eqid |
⊢ ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
23 |
4 5 22
|
ghmlin |
⊢ ( ( 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵 ) → ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) ) |
24 |
16 19 20 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) ) |
25 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
26 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) |
27 |
4 25
|
rhmf |
⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
28 |
14 27
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
29 |
28 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
30 |
28 20
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
31 |
12 25 8 26 29 30 6 22
|
pwsplusgval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ) |
32 |
24 31
|
eqtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ) |
33 |
32
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) ) |
34 |
12 3 25 8 26 29
|
pwselbas |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
35 |
34
|
ffnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) Fn ( 𝐾 ↑m 𝐼 ) ) |
36 |
12 3 25 8 26 30
|
pwselbas |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
37 |
36
|
ffnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) Fn ( 𝐾 ↑m 𝐼 ) ) |
38 |
|
fnfvof |
⊢ ( ( ( ( 𝑄 ‘ 𝑀 ) Fn ( 𝐾 ↑m 𝐼 ) ∧ ( 𝑄 ‘ 𝑁 ) Fn ( 𝐾 ↑m 𝐼 ) ) ∧ ( ( 𝐾 ↑m 𝐼 ) ∈ V ∧ 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) ) → ( ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) + ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) ) |
39 |
35 37 26 9 38
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) + ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) ) |
40 |
10
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) |
41 |
11
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) |
42 |
40 41
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) + ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) = ( 𝑉 + 𝑊 ) ) |
43 |
33 39 42
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) ) |
44 |
21 43
|
jca |
⊢ ( 𝜑 → ( ( 𝑀 ✚ 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) ) ) |