Metamath Proof Explorer


Theorem evlmulval

Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 18-Feb-2025)

Ref Expression
Hypotheses evlmulval.q 𝑄 = ( 𝐼 eval 𝑆 )
evlmulval.p 𝑃 = ( 𝐼 mPoly 𝑆 )
evlmulval.k 𝐾 = ( Base ‘ 𝑆 )
evlmulval.b 𝐵 = ( Base ‘ 𝑃 )
evlmulval.g = ( .r𝑃 )
evlmulval.f · = ( .r𝑆 )
evlmulval.i ( 𝜑𝐼𝑍 )
evlmulval.s ( 𝜑𝑆 ∈ CRing )
evlmulval.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
evlmulval.m ( 𝜑 → ( 𝑀𝐵 ∧ ( ( 𝑄𝑀 ) ‘ 𝐴 ) = 𝑉 ) )
evlmulval.n ( 𝜑 → ( 𝑁𝐵 ∧ ( ( 𝑄𝑁 ) ‘ 𝐴 ) = 𝑊 ) )
Assertion evlmulval ( 𝜑 → ( ( 𝑀 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 · 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 evlmulval.q 𝑄 = ( 𝐼 eval 𝑆 )
2 evlmulval.p 𝑃 = ( 𝐼 mPoly 𝑆 )
3 evlmulval.k 𝐾 = ( Base ‘ 𝑆 )
4 evlmulval.b 𝐵 = ( Base ‘ 𝑃 )
5 evlmulval.g = ( .r𝑃 )
6 evlmulval.f · = ( .r𝑆 )
7 evlmulval.i ( 𝜑𝐼𝑍 )
8 evlmulval.s ( 𝜑𝑆 ∈ CRing )
9 evlmulval.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
10 evlmulval.m ( 𝜑 → ( 𝑀𝐵 ∧ ( ( 𝑄𝑀 ) ‘ 𝐴 ) = 𝑉 ) )
11 evlmulval.n ( 𝜑 → ( 𝑁𝐵 ∧ ( ( 𝑄𝑁 ) ‘ 𝐴 ) = 𝑊 ) )
12 eqid ( 𝑆s ( 𝐾m 𝐼 ) ) = ( 𝑆s ( 𝐾m 𝐼 ) )
13 1 3 2 12 evlrhm ( ( 𝐼𝑍𝑆 ∈ CRing ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
14 7 8 13 syl2anc ( 𝜑𝑄 ∈ ( 𝑃 RingHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
15 rhmrcl1 ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) → 𝑃 ∈ Ring )
16 14 15 syl ( 𝜑𝑃 ∈ Ring )
17 10 simpld ( 𝜑𝑀𝐵 )
18 11 simpld ( 𝜑𝑁𝐵 )
19 4 5 16 17 18 ringcld ( 𝜑 → ( 𝑀 𝑁 ) ∈ 𝐵 )
20 eqid ( .r ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) = ( .r ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) )
21 4 5 20 rhmmul ( ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) ∧ 𝑀𝐵𝑁𝐵 ) → ( 𝑄 ‘ ( 𝑀 𝑁 ) ) = ( ( 𝑄𝑀 ) ( .r ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) ( 𝑄𝑁 ) ) )
22 14 17 18 21 syl3anc ( 𝜑 → ( 𝑄 ‘ ( 𝑀 𝑁 ) ) = ( ( 𝑄𝑀 ) ( .r ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) ( 𝑄𝑁 ) ) )
23 eqid ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) = ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) )
24 ovexd ( 𝜑 → ( 𝐾m 𝐼 ) ∈ V )
25 4 23 rhmf ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆s ( 𝐾m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
26 14 25 syl ( 𝜑𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
27 26 17 ffvelcdmd ( 𝜑 → ( 𝑄𝑀 ) ∈ ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
28 26 18 ffvelcdmd ( 𝜑 → ( 𝑄𝑁 ) ∈ ( Base ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) )
29 12 23 8 24 27 28 6 20 pwsmulrval ( 𝜑 → ( ( 𝑄𝑀 ) ( .r ‘ ( 𝑆s ( 𝐾m 𝐼 ) ) ) ( 𝑄𝑁 ) ) = ( ( 𝑄𝑀 ) ∘f · ( 𝑄𝑁 ) ) )
30 22 29 eqtrd ( 𝜑 → ( 𝑄 ‘ ( 𝑀 𝑁 ) ) = ( ( 𝑄𝑀 ) ∘f · ( 𝑄𝑁 ) ) )
31 30 fveq1d ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄𝑀 ) ∘f · ( 𝑄𝑁 ) ) ‘ 𝐴 ) )
32 12 3 23 8 24 27 pwselbas ( 𝜑 → ( 𝑄𝑀 ) : ( 𝐾m 𝐼 ) ⟶ 𝐾 )
33 32 ffnd ( 𝜑 → ( 𝑄𝑀 ) Fn ( 𝐾m 𝐼 ) )
34 12 3 23 8 24 28 pwselbas ( 𝜑 → ( 𝑄𝑁 ) : ( 𝐾m 𝐼 ) ⟶ 𝐾 )
35 34 ffnd ( 𝜑 → ( 𝑄𝑁 ) Fn ( 𝐾m 𝐼 ) )
36 fnfvof ( ( ( ( 𝑄𝑀 ) Fn ( 𝐾m 𝐼 ) ∧ ( 𝑄𝑁 ) Fn ( 𝐾m 𝐼 ) ) ∧ ( ( 𝐾m 𝐼 ) ∈ V ∧ 𝐴 ∈ ( 𝐾m 𝐼 ) ) ) → ( ( ( 𝑄𝑀 ) ∘f · ( 𝑄𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐴 ) · ( ( 𝑄𝑁 ) ‘ 𝐴 ) ) )
37 33 35 24 9 36 syl22anc ( 𝜑 → ( ( ( 𝑄𝑀 ) ∘f · ( 𝑄𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐴 ) · ( ( 𝑄𝑁 ) ‘ 𝐴 ) ) )
38 10 simprd ( 𝜑 → ( ( 𝑄𝑀 ) ‘ 𝐴 ) = 𝑉 )
39 11 simprd ( 𝜑 → ( ( 𝑄𝑁 ) ‘ 𝐴 ) = 𝑊 )
40 38 39 oveq12d ( 𝜑 → ( ( ( 𝑄𝑀 ) ‘ 𝐴 ) · ( ( 𝑄𝑁 ) ‘ 𝐴 ) ) = ( 𝑉 · 𝑊 ) )
41 31 37 40 3eqtrd ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 · 𝑊 ) )
42 19 41 jca ( 𝜑 → ( ( 𝑀 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 · 𝑊 ) ) )