Metamath Proof Explorer


Theorem evls1dm

Description: The domain of the subring polynomial evaluation function. (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses evls1fn.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
evls1fn.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
evls1fn.u 𝑈 = ( Base ‘ 𝑃 )
evls1fn.1 ( 𝜑𝑅 ∈ CRing )
evls1fn.2 ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
Assertion evls1dm ( 𝜑 → dom 𝑂 = 𝑈 )

Proof

Step Hyp Ref Expression
1 evls1fn.o 𝑂 = ( 𝑅 evalSub1 𝑆 )
2 evls1fn.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
3 evls1fn.u 𝑈 = ( Base ‘ 𝑃 )
4 evls1fn.1 ( 𝜑𝑅 ∈ CRing )
5 evls1fn.2 ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
6 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
7 eqid ( 𝑅s ( Base ‘ 𝑅 ) ) = ( 𝑅s ( Base ‘ 𝑅 ) )
8 eqid ( 𝑅s 𝑆 ) = ( 𝑅s 𝑆 )
9 1 6 7 8 2 evls1rhm ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s ( Base ‘ 𝑅 ) ) ) )
10 4 5 9 syl2anc ( 𝜑𝑂 ∈ ( 𝑃 RingHom ( 𝑅s ( Base ‘ 𝑅 ) ) ) )
11 eqid ( Base ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) = ( Base ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) )
12 3 11 rhmf ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅s ( Base ‘ 𝑅 ) ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) )
13 10 12 syl ( 𝜑𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅s ( Base ‘ 𝑅 ) ) ) )
14 13 fdmd ( 𝜑 → dom 𝑂 = 𝑈 )