Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1evl2.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
ressply1evl2.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
3 |
|
ressply1evl2.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
4 |
|
ressply1evl2.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
ressply1evl2.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
6 |
|
evls1fpws.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
7 |
|
evls1fpws.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
8 |
|
evls1fpws.y |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
9 |
|
evls1fpws.1 |
⊢ · = ( .r ‘ 𝑆 ) |
10 |
|
evls1fpws.2 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
11 |
|
evls1fpws.a |
⊢ 𝐴 = ( coe1 ‘ 𝑀 ) |
12 |
4
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
14 |
|
eqid |
⊢ ( var1 ‘ 𝑈 ) = ( var1 ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
16 |
|
eqid |
⊢ ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 ) |
17 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑊 ) ) = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
18 |
3 14 5 15 16 17 11
|
ply1coe |
⊢ ( ( 𝑈 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 = ( 𝑊 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) |
19 |
13 8 18
|
syl2anc |
⊢ ( 𝜑 → 𝑀 = ( 𝑊 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = ( 𝑄 ‘ ( 𝑊 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
22 |
|
eqid |
⊢ ( 𝑆 ↑s 𝐾 ) = ( 𝑆 ↑s 𝐾 ) |
23 |
3
|
ply1lmod |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ LMod ) |
24 |
13 23
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑊 ∈ LMod ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
27 |
11 5 3 26
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ 𝑈 ) ) |
28 |
8 27
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ 𝑈 ) ) |
29 |
3
|
ply1sca |
⊢ ( 𝑈 ∈ Ring → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
30 |
13 29
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
31 |
30
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
33 |
28 32
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
34 |
16 5
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑊 ) ) |
35 |
3
|
ply1ring |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ Ring ) |
36 |
13 35
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑊 ∈ Ring ) |
38 |
16
|
ringmgp |
⊢ ( 𝑊 ∈ Ring → ( mulGrp ‘ 𝑊 ) ∈ Mnd ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑊 ) ∈ Mnd ) |
40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
41 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑈 ∈ Ring ) |
42 |
14 3 5
|
vr1cl |
⊢ ( 𝑈 ∈ Ring → ( var1 ‘ 𝑈 ) ∈ 𝐵 ) |
43 |
41 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( var1 ‘ 𝑈 ) ∈ 𝐵 ) |
44 |
34 17 39 40 43
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) |
45 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
46 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
47 |
5 45 15 46
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ∈ 𝐵 ) |
48 |
25 33 44 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ∈ 𝐵 ) |
49 |
|
ssidd |
⊢ ( 𝜑 → ℕ0 ⊆ ℕ0 ) |
50 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) ∈ V ) |
51 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑗 ) ) |
52 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) = ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) |
53 |
51 52
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) |
54 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
55 |
11 5 3 54
|
coe1ae0 |
⊢ ( 𝑀 ∈ 𝐵 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) ) |
56 |
8 55
|
syl |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) ) |
57 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) |
58 |
30
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
59 |
58
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( 0g ‘ 𝑈 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
60 |
57 59
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
61 |
60
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) |
62 |
24
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → 𝑊 ∈ LMod ) |
63 |
36 38
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑊 ) ∈ Mnd ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( mulGrp ‘ 𝑊 ) ∈ Mnd ) |
65 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) |
66 |
13 42
|
syl |
⊢ ( 𝜑 → ( var1 ‘ 𝑈 ) ∈ 𝐵 ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( var1 ‘ 𝑈 ) ∈ 𝐵 ) |
68 |
34 17 64 65 67
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) |
69 |
68
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) |
70 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
71 |
5 45 15 70 21
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) |
72 |
62 69 71
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) |
73 |
61 72
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) |
74 |
73
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) ) |
75 |
74
|
imim2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑖 < 𝑗 → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) ) ) |
76 |
75
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) ) ) |
77 |
76
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( 𝐴 ‘ 𝑗 ) = ( 0g ‘ 𝑈 ) ) → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) ) ) |
78 |
56 77
|
mpd |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ℕ0 ∀ 𝑗 ∈ ℕ0 ( 𝑖 < 𝑗 → ( ( 𝐴 ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑗 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( 0g ‘ 𝑊 ) ) ) |
79 |
50 48 53 78
|
mptnn0fsuppd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) finSupp ( 0g ‘ 𝑊 ) ) |
80 |
1 2 3 21 4 22 5 6 7 48 49 79
|
evls1gsumadd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑊 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) = ( ( 𝑆 ↑s 𝐾 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑄 ‘ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) ) |
81 |
1 2 22 4 3
|
evls1rhm |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
82 |
6 7 81
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
84 |
|
eqid |
⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) |
85 |
84 45 36 24 46 5
|
asclf |
⊢ ( 𝜑 → ( algSc ‘ 𝑊 ) : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ 𝐵 ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( algSc ‘ 𝑊 ) : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ 𝐵 ) |
87 |
86 33
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ 𝐵 ) |
88 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
89 |
|
eqid |
⊢ ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) = ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) |
90 |
5 88 89
|
rhmmul |
⊢ ( ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ∧ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ 𝐵 ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) → ( 𝑄 ‘ ( ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ( .r ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) |
91 |
83 87 44 90
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ( .r ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) |
92 |
4
|
subrgcrng |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
93 |
6 7 92
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
94 |
3
|
ply1assa |
⊢ ( 𝑈 ∈ CRing → 𝑊 ∈ AssAlg ) |
95 |
93 94
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑊 ∈ AssAlg ) |
97 |
84 45 46 5 88 15
|
asclmul1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ∈ 𝐵 ) → ( ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ( .r ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) |
98 |
96 33 44 97
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ( .r ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) |
99 |
98
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ( .r ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( 𝑄 ‘ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) |
100 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) |
101 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑆 ∈ CRing ) |
102 |
2
|
fvexi |
⊢ 𝐾 ∈ V |
103 |
102
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐾 ∈ V ) |
104 |
5 100
|
rhmf |
⊢ ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
105 |
83 104
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
106 |
105 87
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ∈ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
107 |
105 44
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
108 |
22 100 101 103 106 107 9 89
|
pwsmulrval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ∘f · ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) |
109 |
22 2 100 101 103 106
|
pwselbas |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) : 𝐾 ⟶ 𝐾 ) |
110 |
109
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) Fn 𝐾 ) |
111 |
22 2 100 101 103 107
|
pwselbas |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) : 𝐾 ⟶ 𝐾 ) |
112 |
111
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) Fn 𝐾 ) |
113 |
|
inidm |
⊢ ( 𝐾 ∩ 𝐾 ) = 𝐾 |
114 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑆 ∈ CRing ) |
115 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
116 |
2
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
117 |
7 116
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
118 |
4 2
|
ressbas2 |
⊢ ( 𝑅 ⊆ 𝐾 → 𝑅 = ( Base ‘ 𝑈 ) ) |
119 |
117 118
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
121 |
28 120
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ 𝑅 ) |
122 |
121
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑘 ) ∈ 𝑅 ) |
123 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ 𝐾 ) |
124 |
1 3 4 2 84 114 115 122 123
|
evls1scafv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑘 ) ) |
125 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑘 ∈ ℕ0 ) |
126 |
1 4 3 14 2 17 10 114 115 125 123
|
evls1varpwval |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ‘ 𝑥 ) = ( 𝑘 ↑ 𝑥 ) ) |
127 |
110 112 103 103 113 124 126
|
offval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ∘f · ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) |
128 |
108 127
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑊 ) ‘ ( 𝐴 ‘ 𝑘 ) ) ) ( .r ‘ ( 𝑆 ↑s 𝐾 ) ) ( 𝑄 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) |
129 |
91 99 128
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑄 ‘ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) |
130 |
129
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( 𝑄 ‘ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) |
131 |
130
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑆 ↑s 𝐾 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑄 ‘ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) = ( ( 𝑆 ↑s 𝐾 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
132 |
|
eqid |
⊢ ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) = ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) |
133 |
102
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
134 |
|
nn0ex |
⊢ ℕ0 ∈ V |
135 |
134
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
136 |
6
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
137 |
136
|
ringcmnd |
⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
138 |
136
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → 𝑆 ∈ Ring ) |
139 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
140 |
139 116
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ⊆ 𝐾 ) |
141 |
140 121
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ 𝐾 ) |
142 |
141
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑘 ) ∈ 𝐾 ) |
143 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
144 |
143 2
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
145 |
143
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
146 |
136 145
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
147 |
146
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
148 |
144 10 147 125 123
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑘 ↑ 𝑥 ) ∈ 𝐾 ) |
149 |
2 9 138 142 148
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ∈ 𝐾 ) |
150 |
149
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ∈ 𝐾 ) |
151 |
150
|
3com23 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ∈ 𝐾 ) |
152 |
151
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ∈ 𝐾 ) |
153 |
135
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ∈ V ) |
154 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) |
155 |
154
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) |
156 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ∈ V ) |
157 |
11 5 3 54
|
coe1sfi |
⊢ ( 𝑀 ∈ 𝐵 → 𝐴 finSupp ( 0g ‘ 𝑈 ) ) |
158 |
8 157
|
syl |
⊢ ( 𝜑 → 𝐴 finSupp ( 0g ‘ 𝑈 ) ) |
159 |
158
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ∈ Fin ) |
160 |
11 5 3 26
|
coe1f |
⊢ ( 𝑀 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑈 ) ) |
161 |
8 160
|
syl |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑈 ) ) |
162 |
161
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ℕ0 ) |
163 |
162
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → 𝐴 Fn ℕ0 ) |
164 |
134
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ℕ0 ∈ V ) |
165 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 0g ‘ 𝑈 ) ∈ V ) |
166 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) |
167 |
163 164 165 166
|
fvdifsupp |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐴 ‘ 𝑘 ) = ( 0g ‘ 𝑈 ) ) |
168 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
169 |
4 168
|
subrg0 |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
170 |
7 169
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
171 |
170
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
172 |
167 171
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐴 ‘ 𝑘 ) = ( 0g ‘ 𝑆 ) ) |
173 |
172
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝐴 ‘ 𝑘 ) = ( 0g ‘ 𝑆 ) ) |
174 |
173
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) = ( ( 0g ‘ 𝑆 ) · ( 𝑘 ↑ 𝑥 ) ) ) |
175 |
136
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑆 ∈ Ring ) |
176 |
175 145
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
177 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) |
178 |
177
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑘 ∈ ℕ0 ) |
179 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ 𝐾 ) |
180 |
144 10 176 178 179
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑘 ↑ 𝑥 ) ∈ 𝐾 ) |
181 |
2 9 168
|
ringlz |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝑘 ↑ 𝑥 ) ∈ 𝐾 ) → ( ( 0g ‘ 𝑆 ) · ( 𝑘 ↑ 𝑥 ) ) = ( 0g ‘ 𝑆 ) ) |
182 |
175 180 181
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 0g ‘ 𝑆 ) · ( 𝑘 ↑ 𝑥 ) ) = ( 0g ‘ 𝑆 ) ) |
183 |
174 182
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) = ( 0g ‘ 𝑆 ) ) |
184 |
183
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( 0g ‘ 𝑆 ) ) ) |
185 |
|
fconstmpt |
⊢ ( 𝐾 × { ( 0g ‘ 𝑆 ) } ) = ( 𝑥 ∈ 𝐾 ↦ ( 0g ‘ 𝑆 ) ) |
186 |
184 185
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) = ( 𝐾 × { ( 0g ‘ 𝑆 ) } ) ) |
187 |
137
|
cmnmndd |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
188 |
22 168
|
pws0g |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐾 ∈ V ) → ( 𝐾 × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
189 |
187 133 188
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
190 |
189
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐾 × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
191 |
186 190
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℕ0 ∖ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) = ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
192 |
191 135
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) supp ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) ⊆ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) |
193 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ∧ ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ∈ V ) ∧ ( ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) supp ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) ⊆ ( 𝐴 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) finSupp ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
194 |
153 155 156 159 192 193
|
syl32anc |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) finSupp ( 0g ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
195 |
22 2 132 133 135 137 152 194
|
pwsgsum |
⊢ ( 𝜑 → ( ( 𝑆 ↑s 𝐾 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
196 |
80 131 195
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑊 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑊 ) ) ( var1 ‘ 𝑈 ) ) ) ) ) ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |
197 |
20 196
|
eqtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑥 ) ) ) ) ) ) |