Step |
Hyp |
Ref |
Expression |
1 |
|
evls1fval.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
evls1fval.e |
⊢ 𝐸 = ( 1o evalSub 𝑆 ) |
3 |
|
evls1fval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
elex |
⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) |
5 |
4
|
adantr |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑆 ∈ V ) |
6 |
|
simpr |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑅 ∈ 𝒫 𝐵 ) |
7 |
|
ovex |
⊢ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ∈ V |
8 |
7
|
mptex |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ V |
9 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑅 ) ∈ V |
10 |
8 9
|
coex |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ∈ V |
11 |
10
|
a1i |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ∈ V ) |
12 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
14 |
13 3
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( Base ‘ 𝑠 ) = 𝐵 ) |
15 |
14
|
csbeq1d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ⦋ 𝐵 / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
16 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
17 |
16
|
a1i |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝐵 ∈ V ) |
18 |
|
id |
⊢ ( 𝑏 = 𝐵 → 𝑏 = 𝐵 ) |
19 |
|
oveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ↑m 1o ) = ( 𝐵 ↑m 1o ) ) |
20 |
18 19
|
oveq12d |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) = ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
21 |
|
mpteq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) |
22 |
21
|
coeq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
23 |
20 22
|
mpteq12dv |
⊢ ( 𝑏 = 𝐵 → ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) |
24 |
23
|
coeq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
26 |
17 25
|
csbied |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ⦋ 𝐵 / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
27 |
|
oveq2 |
⊢ ( 𝑠 = 𝑆 → ( 1o evalSub 𝑠 ) = ( 1o evalSub 𝑆 ) ) |
28 |
27 2
|
eqtr4di |
⊢ ( 𝑠 = 𝑆 → ( 1o evalSub 𝑠 ) = 𝐸 ) |
29 |
28
|
adantr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 1o evalSub 𝑠 ) = 𝐸 ) |
30 |
|
simpr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
31 |
29 30
|
fveq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) = ( 𝐸 ‘ 𝑅 ) ) |
32 |
31
|
coeq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
33 |
15 26 32
|
3eqtrd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
34 |
12 3
|
eqtr4di |
⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = 𝐵 ) |
35 |
34
|
pweqd |
⊢ ( 𝑠 = 𝑆 → 𝒫 ( Base ‘ 𝑠 ) = 𝒫 𝐵 ) |
36 |
|
df-evls1 |
⊢ evalSub1 = ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
37 |
33 35 36
|
ovmpox |
⊢ ( ( 𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 𝐵 ∧ ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ∈ V ) → ( 𝑆 evalSub1 𝑅 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
38 |
5 6 11 37
|
syl3anc |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → ( 𝑆 evalSub1 𝑅 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
39 |
1 38
|
syl5eq |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |