Metamath Proof Explorer


Theorem evls1maplmhm

Description: The function F mapping polynomials p to their subring evaluation at a given point A is a module homomorphism, when considering the subring algebra. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses evls1maprhm.q 𝑂 = ( 𝑅 evalSub1 𝑆 )
evls1maprhm.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
evls1maprhm.b 𝐵 = ( Base ‘ 𝑅 )
evls1maprhm.u 𝑈 = ( Base ‘ 𝑃 )
evls1maprhm.r ( 𝜑𝑅 ∈ CRing )
evls1maprhm.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
evls1maprhm.y ( 𝜑𝑋𝐵 )
evls1maprhm.f 𝐹 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝑋 ) )
evls1maplmhm.1 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑆 )
Assertion evls1maplmhm ( 𝜑𝐹 ∈ ( 𝑃 LMHom 𝐴 ) )

Proof

Step Hyp Ref Expression
1 evls1maprhm.q 𝑂 = ( 𝑅 evalSub1 𝑆 )
2 evls1maprhm.p 𝑃 = ( Poly1 ‘ ( 𝑅s 𝑆 ) )
3 evls1maprhm.b 𝐵 = ( Base ‘ 𝑅 )
4 evls1maprhm.u 𝑈 = ( Base ‘ 𝑃 )
5 evls1maprhm.r ( 𝜑𝑅 ∈ CRing )
6 evls1maprhm.s ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
7 evls1maprhm.y ( 𝜑𝑋𝐵 )
8 evls1maprhm.f 𝐹 = ( 𝑝𝑈 ↦ ( ( 𝑂𝑝 ) ‘ 𝑋 ) )
9 evls1maplmhm.1 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑆 )
10 eqid ( 𝑅s 𝑆 ) = ( 𝑅s 𝑆 )
11 10 subrgring ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅s 𝑆 ) ∈ Ring )
12 6 11 syl ( 𝜑 → ( 𝑅s 𝑆 ) ∈ Ring )
13 2 ply1lmod ( ( 𝑅s 𝑆 ) ∈ Ring → 𝑃 ∈ LMod )
14 12 13 syl ( 𝜑𝑃 ∈ LMod )
15 9 sralmod ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ LMod )
16 6 15 syl ( 𝜑𝐴 ∈ LMod )
17 1 2 3 4 5 6 7 8 evls1maprhm ( 𝜑𝐹 ∈ ( 𝑃 RingHom 𝑅 ) )
18 rhmghm ( 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) → 𝐹 ∈ ( 𝑃 GrpHom 𝑅 ) )
19 17 18 syl ( 𝜑𝐹 ∈ ( 𝑃 GrpHom 𝑅 ) )
20 4 a1i ( 𝜑𝑈 = ( Base ‘ 𝑃 ) )
21 3 a1i ( 𝜑𝐵 = ( Base ‘ 𝑅 ) )
22 9 a1i ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑆 ) )
23 3 subrgss ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆𝐵 )
24 6 23 syl ( 𝜑𝑆𝐵 )
25 24 3 sseqtrdi ( 𝜑𝑆 ⊆ ( Base ‘ 𝑅 ) )
26 22 25 srabase ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐴 ) )
27 3 26 eqtrid ( 𝜑𝐵 = ( Base ‘ 𝐴 ) )
28 eqidd ( ( 𝜑 ∧ ( 𝑥𝑈𝑦𝑈 ) ) → ( 𝑥 ( +g𝑃 ) 𝑦 ) = ( 𝑥 ( +g𝑃 ) 𝑦 ) )
29 22 25 sraaddg ( 𝜑 → ( +g𝑅 ) = ( +g𝐴 ) )
30 29 oveqdr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) = ( 𝑥 ( +g𝐴 ) 𝑦 ) )
31 20 21 20 27 28 30 ghmpropd ( 𝜑 → ( 𝑃 GrpHom 𝑅 ) = ( 𝑃 GrpHom 𝐴 ) )
32 19 31 eleqtrd ( 𝜑𝐹 ∈ ( 𝑃 GrpHom 𝐴 ) )
33 22 25 srasca ( 𝜑 → ( 𝑅s 𝑆 ) = ( Scalar ‘ 𝐴 ) )
34 ovex ( 𝑅s 𝑆 ) ∈ V
35 2 ply1sca ( ( 𝑅s 𝑆 ) ∈ V → ( 𝑅s 𝑆 ) = ( Scalar ‘ 𝑃 ) )
36 34 35 mp1i ( 𝜑 → ( 𝑅s 𝑆 ) = ( Scalar ‘ 𝑃 ) )
37 33 36 eqtr3d ( 𝜑 → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑃 ) )
38 fveq2 ( 𝑝 = ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) → ( 𝑂𝑝 ) = ( 𝑂 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) )
39 38 fveq1d ( 𝑝 = ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) → ( ( 𝑂𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) ‘ 𝑋 ) )
40 14 ad2antrr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → 𝑃 ∈ LMod )
41 simplr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
42 simpr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → 𝑥𝑈 )
43 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
44 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
45 eqid ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) )
46 4 43 44 45 lmodvscl ( ( 𝑃 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥𝑈 ) → ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ∈ 𝑈 )
47 40 41 42 46 syl3anc ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ∈ 𝑈 )
48 fvexd ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) ‘ 𝑋 ) ∈ V )
49 8 39 47 48 fvmptd3 ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) = ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) ‘ 𝑋 ) )
50 eqid ( .r𝑅 ) = ( .r𝑅 )
51 5 ad2antrr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → 𝑅 ∈ CRing )
52 6 ad2antrr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) )
53 10 3 ressbas2 ( 𝑆𝐵𝑆 = ( Base ‘ ( 𝑅s 𝑆 ) ) )
54 24 53 syl ( 𝜑𝑆 = ( Base ‘ ( 𝑅s 𝑆 ) ) )
55 36 fveq2d ( 𝜑 → ( Base ‘ ( 𝑅s 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) )
56 54 55 eqtr2d ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = 𝑆 )
57 56 eqimssd ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⊆ 𝑆 )
58 57 sselda ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → 𝑘𝑆 )
59 58 adantr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → 𝑘𝑆 )
60 7 ad2antrr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → 𝑋𝐵 )
61 1 3 2 10 4 44 50 51 52 59 42 60 evls1vsca ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) ‘ 𝑋 ) = ( 𝑘 ( .r𝑅 ) ( ( 𝑂𝑥 ) ‘ 𝑋 ) ) )
62 22 25 sravsca ( 𝜑 → ( .r𝑅 ) = ( ·𝑠𝐴 ) )
63 62 ad2antrr ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → ( .r𝑅 ) = ( ·𝑠𝐴 ) )
64 eqidd ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → 𝑘 = 𝑘 )
65 fveq2 ( 𝑝 = 𝑥 → ( 𝑂𝑝 ) = ( 𝑂𝑥 ) )
66 65 fveq1d ( 𝑝 = 𝑥 → ( ( 𝑂𝑝 ) ‘ 𝑋 ) = ( ( 𝑂𝑥 ) ‘ 𝑋 ) )
67 fvexd ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → ( ( 𝑂𝑥 ) ‘ 𝑋 ) ∈ V )
68 8 66 42 67 fvmptd3 ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → ( 𝐹𝑥 ) = ( ( 𝑂𝑥 ) ‘ 𝑋 ) )
69 68 eqcomd ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → ( ( 𝑂𝑥 ) ‘ 𝑋 ) = ( 𝐹𝑥 ) )
70 63 64 69 oveq123d ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → ( 𝑘 ( .r𝑅 ) ( ( 𝑂𝑥 ) ‘ 𝑋 ) ) = ( 𝑘 ( ·𝑠𝐴 ) ( 𝐹𝑥 ) ) )
71 49 61 70 3eqtrd ( ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥𝑈 ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠𝐴 ) ( 𝐹𝑥 ) ) )
72 71 anasss ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥𝑈 ) ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠𝐴 ) ( 𝐹𝑥 ) ) )
73 72 ralrimivva ( 𝜑 → ∀ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑥𝑈 ( 𝐹 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠𝐴 ) ( 𝐹𝑥 ) ) )
74 eqid ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 )
75 eqid ( ·𝑠𝐴 ) = ( ·𝑠𝐴 )
76 43 74 45 4 44 75 islmhm ( 𝐹 ∈ ( 𝑃 LMHom 𝐴 ) ↔ ( ( 𝑃 ∈ LMod ∧ 𝐴 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑃 GrpHom 𝐴 ) ∧ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑃 ) ∧ ∀ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑥𝑈 ( 𝐹 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠𝐴 ) ( 𝐹𝑥 ) ) ) ) )
77 76 biimpri ( ( ( 𝑃 ∈ LMod ∧ 𝐴 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑃 GrpHom 𝐴 ) ∧ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑃 ) ∧ ∀ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑥𝑈 ( 𝐹 ‘ ( 𝑘 ( ·𝑠𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠𝐴 ) ( 𝐹𝑥 ) ) ) ) → 𝐹 ∈ ( 𝑃 LMHom 𝐴 ) )
78 14 16 32 37 73 77 syl23anc ( 𝜑𝐹 ∈ ( 𝑃 LMHom 𝐴 ) )