Step |
Hyp |
Ref |
Expression |
1 |
|
evls1maprhm.q |
⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) |
2 |
|
evls1maprhm.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
3 |
|
evls1maprhm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
evls1maprhm.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
5 |
|
evls1maprhm.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
evls1maprhm.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
7 |
|
evls1maprhm.y |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
evls1maprhm.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) |
9 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
10 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
12 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
14 |
13
|
subrgcrng |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝑆 ) ∈ CRing ) |
15 |
5 6 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ CRing ) |
16 |
2
|
ply1crng |
⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ CRing → 𝑃 ∈ CRing ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
18 |
17
|
crngringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
19 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
20 |
|
fveq2 |
⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ) |
21 |
20
|
fveq1d |
⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) ) |
22 |
4 9
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝑈 ) |
23 |
18 22
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ 𝑈 ) |
24 |
|
fvexd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) ∈ V ) |
25 |
8 21 23 24
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) ) |
26 |
13 10
|
subrg1 |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
27 |
6 26
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
29 |
15
|
crngringd |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
30 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
31 |
|
eqid |
⊢ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) = ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) |
32 |
2 30 31 9
|
ply1scl1 |
⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( 1r ‘ 𝑃 ) ) |
33 |
29 32
|
syl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( 1r ‘ 𝑃 ) ) |
34 |
28 33
|
eqtr2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
35 |
34
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
36 |
35
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) ) |
37 |
10
|
subrg1cl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
38 |
6 37
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
39 |
1 2 13 3 30 5 6 38 7
|
evls1scafv |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
40 |
25 36 39
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑅 ) ) |
41 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑅 ∈ CRing ) |
42 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
43 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑞 ∈ 𝑈 ) |
44 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑟 ∈ 𝑈 ) |
45 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) |
46 |
1 3 2 13 4 11 12 41 42 43 44 45
|
evls1muld |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
47 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ) |
48 |
47
|
fveq1d |
⊢ ( 𝑝 = ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
49 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑃 ∈ Ring ) |
50 |
4 11 49 43 44
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ∈ 𝑈 ) |
51 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ∈ V ) |
52 |
8 48 50 51
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑂 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
53 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ 𝑞 ) ) |
54 |
53
|
fveq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ) |
55 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ∈ V ) |
56 |
8 54 43 55
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ 𝑞 ) = ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ) |
57 |
|
fveq2 |
⊢ ( 𝑝 = 𝑟 → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ 𝑟 ) ) |
58 |
57
|
fveq1d |
⊢ ( 𝑝 = 𝑟 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) |
59 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ∈ V ) |
60 |
8 58 44 59
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ 𝑟 ) = ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) |
61 |
56 60
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
62 |
46 52 61
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) ) |
63 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
64 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
65 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
66 |
1 3 2 13 4 65 5 6
|
ressply1evl |
⊢ ( 𝜑 → 𝑂 = ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑂 = ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ) |
68 |
67
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑂 ‘ 𝑝 ) = ( ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ‘ 𝑝 ) ) |
69 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ 𝑈 ) |
70 |
69
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ‘ 𝑝 ) = ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ) |
71 |
68 70
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑂 ‘ 𝑝 ) = ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ) |
72 |
71
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ‘ 𝑋 ) ) |
73 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
74 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
75 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑅 ∈ CRing ) |
76 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑋 ∈ 𝐵 ) |
77 |
|
eqid |
⊢ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) = ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) |
78 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) = ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
79 |
73 13 2 4 6 77 78 74
|
ressply1bas2 |
⊢ ( 𝜑 → 𝑈 = ( ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ) |
80 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
81 |
79 80
|
eqsstrdi |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
82 |
81
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
83 |
65 73 3 74 75 76 82
|
fveval1fvcl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑝 ) ‘ 𝑋 ) ∈ 𝐵 ) |
84 |
72 83
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ∈ 𝐵 ) |
85 |
84 8
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝑈 ⟶ 𝐵 ) |
86 |
1 3 2 13 4 63 64 41 42 43 44 45
|
evls1addd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
87 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ) |
88 |
87
|
fveq1d |
⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
89 |
49
|
ringgrpd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → 𝑃 ∈ Grp ) |
90 |
4 63 89 43 44
|
grpcld |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ∈ 𝑈 ) |
91 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ∈ V ) |
92 |
8 88 90 91
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑂 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝑋 ) ) |
93 |
56 60
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) = ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑋 ) ( +g ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑟 ) ‘ 𝑋 ) ) ) |
94 |
86 92 93
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝑈 ∧ 𝑟 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) ) |
95 |
4 9 10 11 12 18 19 40 62 3 63 64 85 94
|
isrhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |