Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1evl2.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
ressply1evl2.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
3 |
|
ressply1evl2.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
4 |
|
ressply1evl2.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
ressply1evl2.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
6 |
|
evls1muld.1 |
⊢ × = ( .r ‘ 𝑊 ) |
7 |
|
evls1muld.2 |
⊢ · = ( .r ‘ 𝑆 ) |
8 |
|
evls1muld.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
evls1muld.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
10 |
|
evls1muld.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
11 |
|
evls1muld.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
12 |
|
evls1muld.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
13 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
14 |
|
eqid |
⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) |
15 |
|
eqid |
⊢ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) = ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) |
16 |
14 4 3 5 9 15
|
ressply1mul |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵 ) ) → ( 𝑀 ( .r ‘ 𝑊 ) 𝑁 ) = ( 𝑀 ( .r ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) ) |
17 |
13 10 11 16
|
syl12anc |
⊢ ( 𝜑 → ( 𝑀 ( .r ‘ 𝑊 ) 𝑁 ) = ( 𝑀 ( .r ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) ) |
18 |
6
|
oveqi |
⊢ ( 𝑀 × 𝑁 ) = ( 𝑀 ( .r ‘ 𝑊 ) 𝑁 ) |
19 |
5
|
fvexi |
⊢ 𝐵 ∈ V |
20 |
|
eqid |
⊢ ( .r ‘ ( Poly1 ‘ 𝑆 ) ) = ( .r ‘ ( Poly1 ‘ 𝑆 ) ) |
21 |
15 20
|
ressmulr |
⊢ ( 𝐵 ∈ V → ( .r ‘ ( Poly1 ‘ 𝑆 ) ) = ( .r ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) ) |
22 |
19 21
|
ax-mp |
⊢ ( .r ‘ ( Poly1 ‘ 𝑆 ) ) = ( .r ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) |
23 |
22
|
oveqi |
⊢ ( 𝑀 ( .r ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) = ( 𝑀 ( .r ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) |
24 |
17 18 23
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑀 × 𝑁 ) = ( 𝑀 ( .r ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 × 𝑁 ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( .r ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ) |
26 |
25
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 × 𝑁 ) ) ‘ 𝐶 ) = ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( .r ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) ) |
27 |
|
eqid |
⊢ ( eval1 ‘ 𝑆 ) = ( eval1 ‘ 𝑆 ) |
28 |
1 2 3 4 5 27 8 9
|
ressply1evl |
⊢ ( 𝜑 → 𝑄 = ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ) |
29 |
28
|
fveq1d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 × 𝑁 ) ) = ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ ( 𝑀 × 𝑁 ) ) ) |
30 |
4
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
31 |
3
|
ply1ring |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ Ring ) |
32 |
9 30 31
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
33 |
5 6 32 10 11
|
ringcld |
⊢ ( 𝜑 → ( 𝑀 × 𝑁 ) ∈ 𝐵 ) |
34 |
33
|
fvresd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ ( 𝑀 × 𝑁 ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 × 𝑁 ) ) ) |
35 |
29 34
|
eqtr2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 × 𝑁 ) ) = ( 𝑄 ‘ ( 𝑀 × 𝑁 ) ) ) |
36 |
35
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 × 𝑁 ) ) ‘ 𝐶 ) = ( ( 𝑄 ‘ ( 𝑀 × 𝑁 ) ) ‘ 𝐶 ) ) |
37 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
38 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑈 ) = ( PwSer1 ‘ 𝑈 ) |
39 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) |
40 |
14 4 3 5 9 38 39 37
|
ressply1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ) |
41 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
42 |
40 41
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
43 |
42 10
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
44 |
28
|
fveq1d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑀 ) ) |
45 |
10
|
fvresd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑀 ) = ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) ) |
46 |
44 45
|
eqtr2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) = ( 𝑄 ‘ 𝑀 ) ) |
47 |
46
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) ) |
48 |
43 47
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) ) ) |
49 |
42 11
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
50 |
28
|
fveq1d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) = ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) ) |
51 |
11
|
fvresd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) = ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ) |
52 |
50 51
|
eqtr2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) = ( 𝑄 ‘ 𝑁 ) ) |
53 |
52
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) |
54 |
49 53
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
55 |
27 14 2 37 8 12 48 54 20 7
|
evl1muld |
⊢ ( 𝜑 → ( ( 𝑀 ( .r ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( .r ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
56 |
55
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( .r ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
57 |
26 36 56
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 × 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |