Metamath Proof Explorer


Theorem evls1muld

Description: Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025)

Ref Expression
Hypotheses ressply1evl2.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
ressply1evl2.k 𝐾 = ( Base ‘ 𝑆 )
ressply1evl2.w 𝑊 = ( Poly1𝑈 )
ressply1evl2.u 𝑈 = ( 𝑆s 𝑅 )
ressply1evl2.b 𝐵 = ( Base ‘ 𝑊 )
evls1muld.1 × = ( .r𝑊 )
evls1muld.2 · = ( .r𝑆 )
evls1muld.s ( 𝜑𝑆 ∈ CRing )
evls1muld.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evls1muld.m ( 𝜑𝑀𝐵 )
evls1muld.n ( 𝜑𝑁𝐵 )
evls1muld.c ( 𝜑𝐶𝐾 )
Assertion evls1muld ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 × 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐶 ) · ( ( 𝑄𝑁 ) ‘ 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ressply1evl2.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
2 ressply1evl2.k 𝐾 = ( Base ‘ 𝑆 )
3 ressply1evl2.w 𝑊 = ( Poly1𝑈 )
4 ressply1evl2.u 𝑈 = ( 𝑆s 𝑅 )
5 ressply1evl2.b 𝐵 = ( Base ‘ 𝑊 )
6 evls1muld.1 × = ( .r𝑊 )
7 evls1muld.2 · = ( .r𝑆 )
8 evls1muld.s ( 𝜑𝑆 ∈ CRing )
9 evls1muld.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
10 evls1muld.m ( 𝜑𝑀𝐵 )
11 evls1muld.n ( 𝜑𝑁𝐵 )
12 evls1muld.c ( 𝜑𝐶𝐾 )
13 id ( 𝜑𝜑 )
14 eqid ( Poly1𝑆 ) = ( Poly1𝑆 )
15 eqid ( ( Poly1𝑆 ) ↾s 𝐵 ) = ( ( Poly1𝑆 ) ↾s 𝐵 )
16 14 4 3 5 9 15 ressply1mul ( ( 𝜑 ∧ ( 𝑀𝐵𝑁𝐵 ) ) → ( 𝑀 ( .r𝑊 ) 𝑁 ) = ( 𝑀 ( .r ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) ) 𝑁 ) )
17 13 10 11 16 syl12anc ( 𝜑 → ( 𝑀 ( .r𝑊 ) 𝑁 ) = ( 𝑀 ( .r ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) ) 𝑁 ) )
18 6 oveqi ( 𝑀 × 𝑁 ) = ( 𝑀 ( .r𝑊 ) 𝑁 )
19 5 fvexi 𝐵 ∈ V
20 eqid ( .r ‘ ( Poly1𝑆 ) ) = ( .r ‘ ( Poly1𝑆 ) )
21 15 20 ressmulr ( 𝐵 ∈ V → ( .r ‘ ( Poly1𝑆 ) ) = ( .r ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) ) )
22 19 21 ax-mp ( .r ‘ ( Poly1𝑆 ) ) = ( .r ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) )
23 22 oveqi ( 𝑀 ( .r ‘ ( Poly1𝑆 ) ) 𝑁 ) = ( 𝑀 ( .r ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) ) 𝑁 )
24 17 18 23 3eqtr4g ( 𝜑 → ( 𝑀 × 𝑁 ) = ( 𝑀 ( .r ‘ ( Poly1𝑆 ) ) 𝑁 ) )
25 24 fveq2d ( 𝜑 → ( ( eval1𝑆 ) ‘ ( 𝑀 × 𝑁 ) ) = ( ( eval1𝑆 ) ‘ ( 𝑀 ( .r ‘ ( Poly1𝑆 ) ) 𝑁 ) ) )
26 25 fveq1d ( 𝜑 → ( ( ( eval1𝑆 ) ‘ ( 𝑀 × 𝑁 ) ) ‘ 𝐶 ) = ( ( ( eval1𝑆 ) ‘ ( 𝑀 ( .r ‘ ( Poly1𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) )
27 eqid ( eval1𝑆 ) = ( eval1𝑆 )
28 1 2 3 4 5 27 8 9 ressply1evl ( 𝜑𝑄 = ( ( eval1𝑆 ) ↾ 𝐵 ) )
29 28 fveq1d ( 𝜑 → ( 𝑄 ‘ ( 𝑀 × 𝑁 ) ) = ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ ( 𝑀 × 𝑁 ) ) )
30 4 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
31 3 ply1ring ( 𝑈 ∈ Ring → 𝑊 ∈ Ring )
32 9 30 31 3syl ( 𝜑𝑊 ∈ Ring )
33 5 6 32 10 11 ringcld ( 𝜑 → ( 𝑀 × 𝑁 ) ∈ 𝐵 )
34 33 fvresd ( 𝜑 → ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ ( 𝑀 × 𝑁 ) ) = ( ( eval1𝑆 ) ‘ ( 𝑀 × 𝑁 ) ) )
35 29 34 eqtr2d ( 𝜑 → ( ( eval1𝑆 ) ‘ ( 𝑀 × 𝑁 ) ) = ( 𝑄 ‘ ( 𝑀 × 𝑁 ) ) )
36 35 fveq1d ( 𝜑 → ( ( ( eval1𝑆 ) ‘ ( 𝑀 × 𝑁 ) ) ‘ 𝐶 ) = ( ( 𝑄 ‘ ( 𝑀 × 𝑁 ) ) ‘ 𝐶 ) )
37 eqid ( Base ‘ ( Poly1𝑆 ) ) = ( Base ‘ ( Poly1𝑆 ) )
38 eqid ( PwSer1𝑈 ) = ( PwSer1𝑈 )
39 eqid ( Base ‘ ( PwSer1𝑈 ) ) = ( Base ‘ ( PwSer1𝑈 ) )
40 14 4 3 5 9 38 39 37 ressply1bas2 ( 𝜑𝐵 = ( ( Base ‘ ( PwSer1𝑈 ) ) ∩ ( Base ‘ ( Poly1𝑆 ) ) ) )
41 inss2 ( ( Base ‘ ( PwSer1𝑈 ) ) ∩ ( Base ‘ ( Poly1𝑆 ) ) ) ⊆ ( Base ‘ ( Poly1𝑆 ) )
42 40 41 eqsstrdi ( 𝜑𝐵 ⊆ ( Base ‘ ( Poly1𝑆 ) ) )
43 42 10 sseldd ( 𝜑𝑀 ∈ ( Base ‘ ( Poly1𝑆 ) ) )
44 28 fveq1d ( 𝜑 → ( 𝑄𝑀 ) = ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ 𝑀 ) )
45 10 fvresd ( 𝜑 → ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ 𝑀 ) = ( ( eval1𝑆 ) ‘ 𝑀 ) )
46 44 45 eqtr2d ( 𝜑 → ( ( eval1𝑆 ) ‘ 𝑀 ) = ( 𝑄𝑀 ) )
47 46 fveq1d ( 𝜑 → ( ( ( eval1𝑆 ) ‘ 𝑀 ) ‘ 𝐶 ) = ( ( 𝑄𝑀 ) ‘ 𝐶 ) )
48 43 47 jca ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( Poly1𝑆 ) ) ∧ ( ( ( eval1𝑆 ) ‘ 𝑀 ) ‘ 𝐶 ) = ( ( 𝑄𝑀 ) ‘ 𝐶 ) ) )
49 42 11 sseldd ( 𝜑𝑁 ∈ ( Base ‘ ( Poly1𝑆 ) ) )
50 28 fveq1d ( 𝜑 → ( 𝑄𝑁 ) = ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) )
51 11 fvresd ( 𝜑 → ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) = ( ( eval1𝑆 ) ‘ 𝑁 ) )
52 50 51 eqtr2d ( 𝜑 → ( ( eval1𝑆 ) ‘ 𝑁 ) = ( 𝑄𝑁 ) )
53 52 fveq1d ( 𝜑 → ( ( ( eval1𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄𝑁 ) ‘ 𝐶 ) )
54 49 53 jca ( 𝜑 → ( 𝑁 ∈ ( Base ‘ ( Poly1𝑆 ) ) ∧ ( ( ( eval1𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄𝑁 ) ‘ 𝐶 ) ) )
55 27 14 2 37 8 12 48 54 20 7 evl1muld ( 𝜑 → ( ( 𝑀 ( .r ‘ ( Poly1𝑆 ) ) 𝑁 ) ∈ ( Base ‘ ( Poly1𝑆 ) ) ∧ ( ( ( eval1𝑆 ) ‘ ( 𝑀 ( .r ‘ ( Poly1𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐶 ) · ( ( 𝑄𝑁 ) ‘ 𝐶 ) ) ) )
56 55 simprd ( 𝜑 → ( ( ( eval1𝑆 ) ‘ ( 𝑀 ( .r ‘ ( Poly1𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐶 ) · ( ( 𝑄𝑁 ) ‘ 𝐶 ) ) )
57 26 36 56 3eqtr3d ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 × 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐶 ) · ( ( 𝑄𝑁 ) ‘ 𝐶 ) ) )