Step |
Hyp |
Ref |
Expression |
1 |
|
evls1pw.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
evls1pw.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
3 |
|
evls1pw.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
4 |
|
evls1pw.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) |
5 |
|
evls1pw.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
evls1pw.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
7 |
|
evls1pw.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
8 |
|
evls1pw.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
evls1pw.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
10 |
|
evls1pw.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
11 |
|
evls1pw.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
12 |
|
eqid |
⊢ ( 𝑆 ↑s 𝐾 ) = ( 𝑆 ↑s 𝐾 ) |
13 |
1 5 12 2 3
|
evls1rhm |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
14 |
8 9 13
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
15 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) = ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) |
16 |
4 15
|
rhmmhm |
⊢ ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) → 𝑄 ∈ ( 𝐺 MndHom ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ) |
17 |
14 16
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝐺 MndHom ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ) |
18 |
4 6
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
19 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
20 |
18 7 19
|
mhmmulg |
⊢ ( ( 𝑄 ∈ ( 𝐺 MndHom ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑋 ) ) ) |
21 |
17 10 11 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑋 ) ) ) |