Step |
Hyp |
Ref |
Expression |
1 |
|
evls1rhm.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
evls1rhm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
evls1rhm.t |
⊢ 𝑇 = ( 𝑆 ↑s 𝐵 ) |
4 |
|
evls1rhm.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
evls1rhm.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
6 |
2
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
7 |
6
|
adantl |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ⊆ 𝐵 ) |
8 |
|
elpwg |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) |
10 |
7 9
|
mpbird |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ∈ 𝒫 𝐵 ) |
11 |
|
eqid |
⊢ ( 1o evalSub 𝑆 ) = ( 1o evalSub 𝑆 ) |
12 |
1 11 2
|
evls1fval |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ) |
13 |
10 12
|
syldan |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
15 |
2 3 14
|
evls1rhmlem |
⊢ ( 𝑆 ∈ CRing → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ ( ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ) |
16 |
|
1on |
⊢ 1o ∈ On |
17 |
|
eqid |
⊢ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( 1o mPoly 𝑈 ) = ( 1o mPoly 𝑈 ) |
19 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) |
20 |
17 18 4 19 2
|
evlsrhm |
⊢ ( ( 1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
21 |
16 20
|
mp3an1 |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
22 |
|
eqidd |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
23 |
|
eqidd |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
24 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑈 ) = ( PwSer1 ‘ 𝑈 ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
26 |
5 24 25
|
ply1bas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) |
27 |
26
|
a1i |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
28 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
29 |
5 18 28
|
ply1plusg |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ ( 1o mPoly 𝑈 ) ) |
30 |
29
|
a1i |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( +g ‘ 𝑊 ) = ( +g ‘ ( 1o mPoly 𝑈 ) ) ) |
31 |
30
|
oveqdr |
⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑈 ) ) 𝑦 ) ) |
32 |
|
eqidd |
⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) ) |
33 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
34 |
5 18 33
|
ply1mulr |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ ( 1o mPoly 𝑈 ) ) |
35 |
34
|
a1i |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( .r ‘ 𝑊 ) = ( .r ‘ ( 1o mPoly 𝑈 ) ) ) |
36 |
35
|
oveqdr |
⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑈 ) ) 𝑦 ) ) |
37 |
|
eqidd |
⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) ) → ( 𝑥 ( .r ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) ) |
38 |
22 23 27 23 31 32 36 37
|
rhmpropd |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑊 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) = ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
39 |
21 38
|
eleqtrrd |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( 𝑊 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
40 |
|
rhmco |
⊢ ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ ( ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ∧ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( 𝑊 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ∈ ( 𝑊 RingHom 𝑇 ) ) |
41 |
15 39 40
|
syl2an2r |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ∈ ( 𝑊 RingHom 𝑇 ) ) |
42 |
13 41
|
eqeltrd |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ) |