| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evls1rhm.q | ⊢ 𝑄  =  ( 𝑆  evalSub1  𝑅 ) | 
						
							| 2 |  | evls1rhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | evls1rhm.t | ⊢ 𝑇  =  ( 𝑆  ↑s  𝐵 ) | 
						
							| 4 |  | evls1rhm.u | ⊢ 𝑈  =  ( 𝑆  ↾s  𝑅 ) | 
						
							| 5 |  | evls1rhm.w | ⊢ 𝑊  =  ( Poly1 ‘ 𝑈 ) | 
						
							| 6 | 2 | subrgss | ⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  𝑅  ⊆  𝐵 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  𝑅  ⊆  𝐵 ) | 
						
							| 8 |  | elpwg | ⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  ( 𝑅  ∈  𝒫  𝐵  ↔  𝑅  ⊆  𝐵 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝑅  ∈  𝒫  𝐵  ↔  𝑅  ⊆  𝐵 ) ) | 
						
							| 10 | 7 9 | mpbird | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  𝑅  ∈  𝒫  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( 1o  evalSub  𝑆 )  =  ( 1o  evalSub  𝑆 ) | 
						
							| 12 | 1 11 2 | evls1fval | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  𝒫  𝐵 )  →  𝑄  =  ( ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝐵  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( ( 1o  evalSub  𝑆 ) ‘ 𝑅 ) ) ) | 
						
							| 13 | 10 12 | syldan | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  𝑄  =  ( ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝐵  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( ( 1o  evalSub  𝑆 ) ‘ 𝑅 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝐵  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  =  ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝐵  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) ) | 
						
							| 15 | 2 3 14 | evls1rhmlem | ⊢ ( 𝑆  ∈  CRing  →  ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝐵  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∈  ( ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) )  RingHom  𝑇 ) ) | 
						
							| 16 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 17 |  | eqid | ⊢ ( ( 1o  evalSub  𝑆 ) ‘ 𝑅 )  =  ( ( 1o  evalSub  𝑆 ) ‘ 𝑅 ) | 
						
							| 18 |  | eqid | ⊢ ( 1o  mPoly  𝑈 )  =  ( 1o  mPoly  𝑈 ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) )  =  ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) | 
						
							| 20 | 17 18 4 19 2 | evlsrhm | ⊢ ( ( 1o  ∈  On  ∧  𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( ( 1o  evalSub  𝑆 ) ‘ 𝑅 )  ∈  ( ( 1o  mPoly  𝑈 )  RingHom  ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) ) | 
						
							| 21 | 16 20 | mp3an1 | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( ( 1o  evalSub  𝑆 ) ‘ 𝑅 )  ∈  ( ( 1o  mPoly  𝑈 )  RingHom  ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) ) | 
						
							| 22 |  | eqidd | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 23 |  | eqidd | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( Base ‘ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) )  =  ( Base ‘ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 25 | 5 24 | ply1bas | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ ( 1o  mPoly  𝑈 ) ) | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( Base ‘ 𝑊 )  =  ( Base ‘ ( 1o  mPoly  𝑈 ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 28 | 5 18 27 | ply1plusg | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ ( 1o  mPoly  𝑈 ) ) | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( +g ‘ 𝑊 )  =  ( +g ‘ ( 1o  mPoly  𝑈 ) ) ) | 
						
							| 30 | 29 | oveqdr | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 1o  mPoly  𝑈 ) ) 𝑦 ) ) | 
						
							| 31 |  | eqidd | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) ) )  →  ( 𝑥 ( +g ‘ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) 𝑦 ) ) | 
						
							| 32 |  | eqid | ⊢ ( .r ‘ 𝑊 )  =  ( .r ‘ 𝑊 ) | 
						
							| 33 | 5 18 32 | ply1mulr | ⊢ ( .r ‘ 𝑊 )  =  ( .r ‘ ( 1o  mPoly  𝑈 ) ) | 
						
							| 34 | 33 | a1i | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( .r ‘ 𝑊 )  =  ( .r ‘ ( 1o  mPoly  𝑈 ) ) ) | 
						
							| 35 | 34 | oveqdr | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 1o  mPoly  𝑈 ) ) 𝑦 ) ) | 
						
							| 36 |  | eqidd | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  ( Base ‘ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) )  ∧  𝑦  ∈  ( Base ‘ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) ) )  →  ( 𝑥 ( .r ‘ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) 𝑦 ) ) | 
						
							| 37 | 22 23 26 23 30 31 35 36 | rhmpropd | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝑊  RingHom  ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) )  =  ( ( 1o  mPoly  𝑈 )  RingHom  ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) ) | 
						
							| 38 | 21 37 | eleqtrrd | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( ( 1o  evalSub  𝑆 ) ‘ 𝑅 )  ∈  ( 𝑊  RingHom  ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) ) | 
						
							| 39 |  | rhmco | ⊢ ( ( ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝐵  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∈  ( ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) )  RingHom  𝑇 )  ∧  ( ( 1o  evalSub  𝑆 ) ‘ 𝑅 )  ∈  ( 𝑊  RingHom  ( 𝑆  ↑s  ( 𝐵  ↑m  1o ) ) ) )  →  ( ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝐵  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( ( 1o  evalSub  𝑆 ) ‘ 𝑅 ) )  ∈  ( 𝑊  RingHom  𝑇 ) ) | 
						
							| 40 | 15 38 39 | syl2an2r | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( ( 𝑥  ∈  ( 𝐵  ↑m  ( 𝐵  ↑m  1o ) )  ↦  ( 𝑥  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) )  ∘  ( ( 1o  evalSub  𝑆 ) ‘ 𝑅 ) )  ∈  ( 𝑊  RingHom  𝑇 ) ) | 
						
							| 41 | 13 40 | eqeltrd | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  𝑄  ∈  ( 𝑊  RingHom  𝑇 ) ) |