Step |
Hyp |
Ref |
Expression |
1 |
|
evl1rhmlem.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
evl1rhmlem.t |
⊢ 𝑇 = ( 𝑅 ↑s 𝐵 ) |
3 |
|
evl1rhmlem.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
4 |
|
ovex |
⊢ ( 𝐵 ↑m 1o ) ∈ V |
5 |
|
eqid |
⊢ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) |
6 |
5 1
|
pwsbas |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐵 ↑m 1o ) ∈ V ) → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
7 |
4 6
|
mpan2 |
⊢ ( 𝑅 ∈ CRing → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
8 |
7
|
mpteq1d |
⊢ ( 𝑅 ∈ CRing → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) |
9 |
3 8
|
syl5eq |
⊢ ( 𝑅 ∈ CRing → 𝐹 = ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) |
10 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) |
11 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
12 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
13 |
12
|
a1i |
⊢ ( 𝑅 ∈ CRing → 𝐵 ∈ V ) |
14 |
4
|
a1i |
⊢ ( 𝑅 ∈ CRing → ( 𝐵 ↑m 1o ) ∈ V ) |
15 |
|
df1o2 |
⊢ 1o = { ∅ } |
16 |
|
0ex |
⊢ ∅ ∈ V |
17 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) |
18 |
15 12 16 17
|
mapsnf1o3 |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 1o ) |
19 |
|
f1of |
⊢ ( ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 1o ) → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) |
20 |
18 19
|
mp1i |
⊢ ( 𝑅 ∈ CRing → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) |
21 |
2 5 10 11 13 14 20
|
pwsco1rhm |
⊢ ( 𝑅 ∈ CRing → ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ ( ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ) |
22 |
9 21
|
eqeltrd |
⊢ ( 𝑅 ∈ CRing → 𝐹 ∈ ( ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ) |