Step |
Hyp |
Ref |
Expression |
1 |
|
evls1sca.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
evls1sca.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
3 |
|
evls1sca.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
evls1sca.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
5 |
|
evls1sca.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
6 |
|
evls1sca.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
7 |
|
evls1sca.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
8 |
|
evls1sca.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
9 |
|
1on |
⊢ 1o ∈ On |
10 |
|
eqid |
⊢ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( 1o mPoly 𝑈 ) = ( 1o mPoly 𝑈 ) |
12 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) |
13 |
10 11 3 12 4
|
evlsrhm |
⊢ ( ( 1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
14 |
9 6 7 13
|
mp3an2i |
⊢ ( 𝜑 → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ ( 1o mPoly 𝑈 ) ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) |
17 |
15 16
|
rhmf |
⊢ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
18 |
14 17
|
syl |
⊢ ( 𝜑 → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
19 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
20 |
3
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
21 |
7 20
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
22 |
2
|
ply1ring |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ Ring ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
24 |
2
|
ply1lmod |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ LMod ) |
25 |
21 24
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
26 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
28 |
5 19 23 25 26 27
|
asclf |
⊢ ( 𝜑 → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) |
29 |
4
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
30 |
7 29
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐵 ) |
31 |
3 4
|
ressbas2 |
⊢ ( 𝑅 ⊆ 𝐵 → 𝑅 = ( Base ‘ 𝑈 ) ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
33 |
2
|
ply1sca |
⊢ ( 𝑈 ∈ Ring → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
34 |
21 33
|
syl |
⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
35 |
34
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
36 |
32 35
|
eqtrd |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
37 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑈 ) = ( PwSer1 ‘ 𝑈 ) |
38 |
2 37 27
|
ply1bas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) |
39 |
38
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
40 |
39
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ ( 1o mPoly 𝑈 ) ) = ( Base ‘ 𝑊 ) ) |
41 |
36 40
|
feq23d |
⊢ ( 𝜑 → ( 𝐴 : 𝑅 ⟶ ( Base ‘ ( 1o mPoly 𝑈 ) ) ↔ 𝐴 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) ) |
42 |
28 41
|
mpbird |
⊢ ( 𝜑 → 𝐴 : 𝑅 ⟶ ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
43 |
42 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
44 |
|
fvco3 |
⊢ ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ ( 1o mPoly 𝑈 ) ) ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
45 |
18 43 44
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) ) |
46 |
5
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( algSc ‘ 𝑊 ) ) |
47 |
|
eqid |
⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) |
48 |
2 47
|
ply1ascl |
⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ ( 1o mPoly 𝑈 ) ) |
49 |
46 48
|
eqtrdi |
⊢ ( 𝜑 → 𝐴 = ( algSc ‘ ( 1o mPoly 𝑈 ) ) ) |
50 |
49
|
fveq1d |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) |
51 |
50
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) ) |
52 |
|
eqid |
⊢ ( algSc ‘ ( 1o mPoly 𝑈 ) ) = ( algSc ‘ ( 1o mPoly 𝑈 ) ) |
53 |
9
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
54 |
10 11 3 4 52 53 6 7 8
|
evlssca |
⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) |
55 |
51 54
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) |
56 |
55
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) ) |
57 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) |
58 |
|
coeq1 |
⊢ ( 𝑥 = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
60 |
30 8
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
61 |
|
fconst6g |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
62 |
60 61
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
63 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
64 |
63
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
65 |
|
ovex |
⊢ ( 𝐵 ↑m 1o ) ∈ V |
66 |
65
|
a1i |
⊢ ( 𝜑 → ( 𝐵 ↑m 1o ) ∈ V ) |
67 |
64 66
|
elmapd |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↔ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) ) |
68 |
62 67
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
69 |
|
snex |
⊢ { 𝑋 } ∈ V |
70 |
65 69
|
xpex |
⊢ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ V |
71 |
70
|
a1i |
⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ V ) |
72 |
64
|
mptexd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V ) |
73 |
|
coexg |
⊢ ( ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∈ V ∧ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V ) → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V ) |
74 |
71 72 73
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V ) |
75 |
57 59 68 74
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) = ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
76 |
|
fconst6g |
⊢ ( 𝑦 ∈ 𝐵 → ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) |
77 |
76
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) |
78 |
63 9
|
pm3.2i |
⊢ ( 𝐵 ∈ V ∧ 1o ∈ On ) |
79 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐵 ∈ V ∧ 1o ∈ On ) ) |
80 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ 1o ∈ On ) → ( ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) ) |
81 |
79 80
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o ⟶ 𝐵 ) ) |
82 |
77 81
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 1o × { 𝑦 } ) ∈ ( 𝐵 ↑m 1o ) ) |
83 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) |
84 |
|
fconstmpt |
⊢ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ 𝑋 ) |
85 |
84
|
a1i |
⊢ ( 𝜑 → ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) = ( 𝑧 ∈ ( 𝐵 ↑m 1o ) ↦ 𝑋 ) ) |
86 |
|
eqidd |
⊢ ( 𝑧 = ( 1o × { 𝑦 } ) → 𝑋 = 𝑋 ) |
87 |
82 83 85 86
|
fmptco |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
88 |
75 87
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵 ↑m 1o ) × { 𝑋 } ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
89 |
45 56 88
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
90 |
|
elpwg |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) |
91 |
29 90
|
mpbird |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ∈ 𝒫 𝐵 ) |
92 |
7 91
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ 𝒫 𝐵 ) |
93 |
|
eqid |
⊢ ( 1o evalSub 𝑆 ) = ( 1o evalSub 𝑆 ) |
94 |
1 93 4
|
evls1fval |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ) |
95 |
6 92 94
|
syl2anc |
⊢ ( 𝜑 → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ) |
96 |
95
|
fveq1d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴 ‘ 𝑋 ) ) ) |
97 |
|
fconstmpt |
⊢ ( 𝐵 × { 𝑋 } ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) |
98 |
97
|
a1i |
⊢ ( 𝜑 → ( 𝐵 × { 𝑋 } ) = ( 𝑦 ∈ 𝐵 ↦ 𝑋 ) ) |
99 |
89 96 98
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |