Metamath Proof Explorer


Theorem evls1sca

Description: Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019)

Ref Expression
Hypotheses evls1sca.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
evls1sca.w 𝑊 = ( Poly1𝑈 )
evls1sca.u 𝑈 = ( 𝑆s 𝑅 )
evls1sca.b 𝐵 = ( Base ‘ 𝑆 )
evls1sca.a 𝐴 = ( algSc ‘ 𝑊 )
evls1sca.s ( 𝜑𝑆 ∈ CRing )
evls1sca.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evls1sca.x ( 𝜑𝑋𝑅 )
Assertion evls1sca ( 𝜑 → ( 𝑄 ‘ ( 𝐴𝑋 ) ) = ( 𝐵 × { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 evls1sca.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
2 evls1sca.w 𝑊 = ( Poly1𝑈 )
3 evls1sca.u 𝑈 = ( 𝑆s 𝑅 )
4 evls1sca.b 𝐵 = ( Base ‘ 𝑆 )
5 evls1sca.a 𝐴 = ( algSc ‘ 𝑊 )
6 evls1sca.s ( 𝜑𝑆 ∈ CRing )
7 evls1sca.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
8 evls1sca.x ( 𝜑𝑋𝑅 )
9 1on 1o ∈ On
10 eqid ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 )
11 eqid ( 1o mPoly 𝑈 ) = ( 1o mPoly 𝑈 )
12 eqid ( 𝑆s ( 𝐵m 1o ) ) = ( 𝑆s ( 𝐵m 1o ) )
13 10 11 3 12 4 evlsrhm ( ( 1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆s ( 𝐵m 1o ) ) ) )
14 9 6 7 13 mp3an2i ( 𝜑 → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆s ( 𝐵m 1o ) ) ) )
15 eqid ( Base ‘ ( 1o mPoly 𝑈 ) ) = ( Base ‘ ( 1o mPoly 𝑈 ) )
16 eqid ( Base ‘ ( 𝑆s ( 𝐵m 1o ) ) ) = ( Base ‘ ( 𝑆s ( 𝐵m 1o ) ) )
17 15 16 rhmf ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆s ( 𝐵m 1o ) ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆s ( 𝐵m 1o ) ) ) )
18 14 17 syl ( 𝜑 → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆s ( 𝐵m 1o ) ) ) )
19 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
20 3 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
21 7 20 syl ( 𝜑𝑈 ∈ Ring )
22 2 ply1ring ( 𝑈 ∈ Ring → 𝑊 ∈ Ring )
23 21 22 syl ( 𝜑𝑊 ∈ Ring )
24 2 ply1lmod ( 𝑈 ∈ Ring → 𝑊 ∈ LMod )
25 21 24 syl ( 𝜑𝑊 ∈ LMod )
26 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
27 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
28 5 19 23 25 26 27 asclf ( 𝜑𝐴 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) )
29 4 subrgss ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅𝐵 )
30 7 29 syl ( 𝜑𝑅𝐵 )
31 3 4 ressbas2 ( 𝑅𝐵𝑅 = ( Base ‘ 𝑈 ) )
32 30 31 syl ( 𝜑𝑅 = ( Base ‘ 𝑈 ) )
33 2 ply1sca ( 𝑈 ∈ Ring → 𝑈 = ( Scalar ‘ 𝑊 ) )
34 21 33 syl ( 𝜑𝑈 = ( Scalar ‘ 𝑊 ) )
35 34 fveq2d ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
36 32 35 eqtrd ( 𝜑𝑅 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
37 eqid ( PwSer1𝑈 ) = ( PwSer1𝑈 )
38 2 37 27 ply1bas ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) )
39 38 a1i ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) )
40 39 eqcomd ( 𝜑 → ( Base ‘ ( 1o mPoly 𝑈 ) ) = ( Base ‘ 𝑊 ) )
41 36 40 feq23d ( 𝜑 → ( 𝐴 : 𝑅 ⟶ ( Base ‘ ( 1o mPoly 𝑈 ) ) ↔ 𝐴 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) )
42 28 41 mpbird ( 𝜑𝐴 : 𝑅 ⟶ ( Base ‘ ( 1o mPoly 𝑈 ) ) )
43 42 8 ffvelrnd ( 𝜑 → ( 𝐴𝑋 ) ∈ ( Base ‘ ( 1o mPoly 𝑈 ) ) )
44 fvco3 ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 1o mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆s ( 𝐵m 1o ) ) ) ∧ ( 𝐴𝑋 ) ∈ ( Base ‘ ( 1o mPoly 𝑈 ) ) ) → ( ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴𝑋 ) ) = ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴𝑋 ) ) ) )
45 18 43 44 syl2anc ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴𝑋 ) ) = ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴𝑋 ) ) ) )
46 5 a1i ( 𝜑𝐴 = ( algSc ‘ 𝑊 ) )
47 eqid ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 )
48 2 47 ply1ascl ( algSc ‘ 𝑊 ) = ( algSc ‘ ( 1o mPoly 𝑈 ) )
49 46 48 eqtrdi ( 𝜑𝐴 = ( algSc ‘ ( 1o mPoly 𝑈 ) ) )
50 49 fveq1d ( 𝜑 → ( 𝐴𝑋 ) = ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) )
51 50 fveq2d ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴𝑋 ) ) = ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) )
52 eqid ( algSc ‘ ( 1o mPoly 𝑈 ) ) = ( algSc ‘ ( 1o mPoly 𝑈 ) )
53 9 a1i ( 𝜑 → 1o ∈ On )
54 10 11 3 4 52 53 6 7 8 evlssca ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 1o mPoly 𝑈 ) ) ‘ 𝑋 ) ) = ( ( 𝐵m 1o ) × { 𝑋 } ) )
55 51 54 eqtrd ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴𝑋 ) ) = ( ( 𝐵m 1o ) × { 𝑋 } ) )
56 55 fveq2d ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( 𝐴𝑋 ) ) ) = ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵m 1o ) × { 𝑋 } ) ) )
57 eqidd ( 𝜑 → ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) )
58 coeq1 ( 𝑥 = ( ( 𝐵m 1o ) × { 𝑋 } ) → ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐵m 1o ) × { 𝑋 } ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) )
59 58 adantl ( ( 𝜑𝑥 = ( ( 𝐵m 1o ) × { 𝑋 } ) ) → ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐵m 1o ) × { 𝑋 } ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) )
60 30 8 sseldd ( 𝜑𝑋𝐵 )
61 fconst6g ( 𝑋𝐵 → ( ( 𝐵m 1o ) × { 𝑋 } ) : ( 𝐵m 1o ) ⟶ 𝐵 )
62 60 61 syl ( 𝜑 → ( ( 𝐵m 1o ) × { 𝑋 } ) : ( 𝐵m 1o ) ⟶ 𝐵 )
63 4 fvexi 𝐵 ∈ V
64 63 a1i ( 𝜑𝐵 ∈ V )
65 ovex ( 𝐵m 1o ) ∈ V
66 65 a1i ( 𝜑 → ( 𝐵m 1o ) ∈ V )
67 64 66 elmapd ( 𝜑 → ( ( ( 𝐵m 1o ) × { 𝑋 } ) ∈ ( 𝐵m ( 𝐵m 1o ) ) ↔ ( ( 𝐵m 1o ) × { 𝑋 } ) : ( 𝐵m 1o ) ⟶ 𝐵 ) )
68 62 67 mpbird ( 𝜑 → ( ( 𝐵m 1o ) × { 𝑋 } ) ∈ ( 𝐵m ( 𝐵m 1o ) ) )
69 snex { 𝑋 } ∈ V
70 65 69 xpex ( ( 𝐵m 1o ) × { 𝑋 } ) ∈ V
71 70 a1i ( 𝜑 → ( ( 𝐵m 1o ) × { 𝑋 } ) ∈ V )
72 64 mptexd ( 𝜑 → ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V )
73 coexg ( ( ( ( 𝐵m 1o ) × { 𝑋 } ) ∈ V ∧ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V ) → ( ( ( 𝐵m 1o ) × { 𝑋 } ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V )
74 71 72 73 syl2anc ( 𝜑 → ( ( ( 𝐵m 1o ) × { 𝑋 } ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V )
75 57 59 68 74 fvmptd ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵m 1o ) × { 𝑋 } ) ) = ( ( ( 𝐵m 1o ) × { 𝑋 } ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) )
76 fconst6g ( 𝑦𝐵 → ( 1o × { 𝑦 } ) : 1o𝐵 )
77 76 adantl ( ( 𝜑𝑦𝐵 ) → ( 1o × { 𝑦 } ) : 1o𝐵 )
78 63 9 pm3.2i ( 𝐵 ∈ V ∧ 1o ∈ On )
79 78 a1i ( ( 𝜑𝑦𝐵 ) → ( 𝐵 ∈ V ∧ 1o ∈ On ) )
80 elmapg ( ( 𝐵 ∈ V ∧ 1o ∈ On ) → ( ( 1o × { 𝑦 } ) ∈ ( 𝐵m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o𝐵 ) )
81 79 80 syl ( ( 𝜑𝑦𝐵 ) → ( ( 1o × { 𝑦 } ) ∈ ( 𝐵m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o𝐵 ) )
82 77 81 mpbird ( ( 𝜑𝑦𝐵 ) → ( 1o × { 𝑦 } ) ∈ ( 𝐵m 1o ) )
83 eqidd ( 𝜑 → ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) )
84 fconstmpt ( ( 𝐵m 1o ) × { 𝑋 } ) = ( 𝑧 ∈ ( 𝐵m 1o ) ↦ 𝑋 )
85 84 a1i ( 𝜑 → ( ( 𝐵m 1o ) × { 𝑋 } ) = ( 𝑧 ∈ ( 𝐵m 1o ) ↦ 𝑋 ) )
86 eqidd ( 𝑧 = ( 1o × { 𝑦 } ) → 𝑋 = 𝑋 )
87 82 83 85 86 fmptco ( 𝜑 → ( ( ( 𝐵m 1o ) × { 𝑋 } ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝑦𝐵𝑋 ) )
88 75 87 eqtrd ( 𝜑 → ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐵m 1o ) × { 𝑋 } ) ) = ( 𝑦𝐵𝑋 ) )
89 45 56 88 3eqtrd ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴𝑋 ) ) = ( 𝑦𝐵𝑋 ) )
90 elpwg ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑅 ∈ 𝒫 𝐵𝑅𝐵 ) )
91 29 90 mpbird ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ∈ 𝒫 𝐵 )
92 7 91 syl ( 𝜑𝑅 ∈ 𝒫 𝐵 )
93 eqid ( 1o evalSub 𝑆 ) = ( 1o evalSub 𝑆 )
94 1 93 4 evls1fval ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) )
95 6 92 94 syl2anc ( 𝜑𝑄 = ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) )
96 95 fveq1d ( 𝜑 → ( 𝑄 ‘ ( 𝐴𝑋 ) ) = ( ( ( 𝑥 ∈ ( 𝐵m ( 𝐵m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ‘ ( 𝐴𝑋 ) ) )
97 fconstmpt ( 𝐵 × { 𝑋 } ) = ( 𝑦𝐵𝑋 )
98 97 a1i ( 𝜑 → ( 𝐵 × { 𝑋 } ) = ( 𝑦𝐵𝑋 ) )
99 89 96 98 3eqtr4d ( 𝜑 → ( 𝑄 ‘ ( 𝐴𝑋 ) ) = ( 𝐵 × { 𝑋 } ) )