Step |
Hyp |
Ref |
Expression |
1 |
|
evls1scafv.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
evls1scafv.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
3 |
|
evls1scafv.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
evls1scafv.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
5 |
|
evls1scafv.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
6 |
|
evls1scafv.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
7 |
|
evls1scafv.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
8 |
|
evls1scafv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
9 |
|
evls1scafv.1 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
10 |
1 2 3 4 5 6 7 8
|
evls1sca |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
11 |
10
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐶 ) = ( ( 𝐵 × { 𝑋 } ) ‘ 𝐶 ) ) |
12 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝑅 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑋 } ) ‘ 𝐶 ) = 𝑋 ) |
13 |
8 9 12
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) ‘ 𝐶 ) = 𝑋 ) |
14 |
11 13
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐶 ) = 𝑋 ) |