Metamath Proof Explorer


Theorem evls1scafv

Description: Value of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 21-Jan-2025)

Ref Expression
Hypotheses evls1scafv.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
evls1scafv.w 𝑊 = ( Poly1𝑈 )
evls1scafv.u 𝑈 = ( 𝑆s 𝑅 )
evls1scafv.b 𝐵 = ( Base ‘ 𝑆 )
evls1scafv.a 𝐴 = ( algSc ‘ 𝑊 )
evls1scafv.s ( 𝜑𝑆 ∈ CRing )
evls1scafv.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evls1scafv.x ( 𝜑𝑋𝑅 )
evls1scafv.1 ( 𝜑𝐶𝐵 )
Assertion evls1scafv ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴𝑋 ) ) ‘ 𝐶 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 evls1scafv.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
2 evls1scafv.w 𝑊 = ( Poly1𝑈 )
3 evls1scafv.u 𝑈 = ( 𝑆s 𝑅 )
4 evls1scafv.b 𝐵 = ( Base ‘ 𝑆 )
5 evls1scafv.a 𝐴 = ( algSc ‘ 𝑊 )
6 evls1scafv.s ( 𝜑𝑆 ∈ CRing )
7 evls1scafv.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
8 evls1scafv.x ( 𝜑𝑋𝑅 )
9 evls1scafv.1 ( 𝜑𝐶𝐵 )
10 1 2 3 4 5 6 7 8 evls1sca ( 𝜑 → ( 𝑄 ‘ ( 𝐴𝑋 ) ) = ( 𝐵 × { 𝑋 } ) )
11 10 fveq1d ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴𝑋 ) ) ‘ 𝐶 ) = ( ( 𝐵 × { 𝑋 } ) ‘ 𝐶 ) )
12 fvconst2g ( ( 𝑋𝑅𝐶𝐵 ) → ( ( 𝐵 × { 𝑋 } ) ‘ 𝐶 ) = 𝑋 )
13 8 9 12 syl2anc ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) ‘ 𝐶 ) = 𝑋 )
14 11 13 eqtrd ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴𝑋 ) ) ‘ 𝐶 ) = 𝑋 )