Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1evl.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
ressply1evl.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
3 |
|
ressply1evl.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
4 |
|
ressply1evl.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
ressply1evl.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
6 |
|
evls1subd.1 |
⊢ 𝐷 = ( -g ‘ 𝑊 ) |
7 |
|
evls1subd.2 |
⊢ − = ( -g ‘ 𝑆 ) |
8 |
|
evls1subd.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
evls1subd.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
10 |
|
evls1subd.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
11 |
|
evls1subd.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
12 |
|
evls1subd.y |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
13 |
6
|
oveqi |
⊢ ( 𝑀 𝐷 𝑁 ) = ( 𝑀 ( -g ‘ 𝑊 ) 𝑁 ) |
14 |
|
eqid |
⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) |
15 |
|
eqid |
⊢ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) = ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) |
16 |
14 4 3 5 9 15 10 11
|
ressply1sub |
⊢ ( 𝜑 → ( 𝑀 ( -g ‘ 𝑊 ) 𝑁 ) = ( 𝑀 ( -g ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) ) |
17 |
13 16
|
eqtrid |
⊢ ( 𝜑 → ( 𝑀 𝐷 𝑁 ) = ( 𝑀 ( -g ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) ) |
18 |
14 4 3 5
|
subrgply1 |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubRing ‘ ( Poly1 ‘ 𝑆 ) ) ) |
19 |
|
subrgsubg |
⊢ ( 𝐵 ∈ ( SubRing ‘ ( Poly1 ‘ 𝑆 ) ) → 𝐵 ∈ ( SubGrp ‘ ( Poly1 ‘ 𝑆 ) ) ) |
20 |
9 18 19
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ ( Poly1 ‘ 𝑆 ) ) ) |
21 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ 𝑆 ) ) = ( -g ‘ ( Poly1 ‘ 𝑆 ) ) |
22 |
|
eqid |
⊢ ( -g ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) = ( -g ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) |
23 |
21 15 22
|
subgsub |
⊢ ( ( 𝐵 ∈ ( SubGrp ‘ ( Poly1 ‘ 𝑆 ) ) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵 ) → ( 𝑀 ( -g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) = ( 𝑀 ( -g ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) ) |
24 |
20 10 11 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ( -g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) = ( 𝑀 ( -g ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) ) |
25 |
17 24
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 𝐷 𝑁 ) = ( 𝑀 ( -g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 𝐷 𝑁 ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( -g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ) |
27 |
26
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 𝐷 𝑁 ) ) ‘ 𝐶 ) = ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( -g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) ) |
28 |
|
eqid |
⊢ ( eval1 ‘ 𝑆 ) = ( eval1 ‘ 𝑆 ) |
29 |
1 2 3 4 5 28 8 9
|
ressply1evl |
⊢ ( 𝜑 → 𝑄 = ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ) |
30 |
29
|
fveq1d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 𝐷 𝑁 ) ) = ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ ( 𝑀 𝐷 𝑁 ) ) ) |
31 |
4
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
32 |
3
|
ply1ring |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ Ring ) |
33 |
9 31 32
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
34 |
33
|
ringgrpd |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
35 |
5 6
|
grpsubcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵 ) → ( 𝑀 𝐷 𝑁 ) ∈ 𝐵 ) |
36 |
34 10 11 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 𝐷 𝑁 ) ∈ 𝐵 ) |
37 |
36
|
fvresd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ ( 𝑀 𝐷 𝑁 ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 𝐷 𝑁 ) ) ) |
38 |
30 37
|
eqtr2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 𝐷 𝑁 ) ) = ( 𝑄 ‘ ( 𝑀 𝐷 𝑁 ) ) ) |
39 |
38
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 𝐷 𝑁 ) ) ‘ 𝐶 ) = ( ( 𝑄 ‘ ( 𝑀 𝐷 𝑁 ) ) ‘ 𝐶 ) ) |
40 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
41 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑈 ) = ( PwSer1 ‘ 𝑈 ) |
42 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) |
43 |
14 4 3 5 9 41 42 40
|
ressply1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ) |
44 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
45 |
43 44
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
46 |
45 10
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
47 |
29
|
fveq1d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑀 ) ) |
48 |
10
|
fvresd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑀 ) = ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) ) |
49 |
47 48
|
eqtr2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) = ( 𝑄 ‘ 𝑀 ) ) |
50 |
49
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) ) |
51 |
46 50
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑀 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) ) ) |
52 |
45 11
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
53 |
29
|
fveq1d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) = ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) ) |
54 |
11
|
fvresd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) = ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ) |
55 |
53 54
|
eqtr2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) = ( 𝑄 ‘ 𝑁 ) ) |
56 |
55
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) |
57 |
52 56
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
58 |
28 14 2 40 8 12 51 57 21 7
|
evl1subd |
⊢ ( 𝜑 → ( ( 𝑀 ( -g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( -g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) − ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
59 |
58
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝑀 ( -g ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) − ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
60 |
27 39 59
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 𝐷 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) − ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |