Metamath Proof Explorer


Theorem evls1subd

Description: Univariate polynomial evaluation of a difference of polynomials. (Contributed by Thierry Arnoux, 25-Apr-2025)

Ref Expression
Hypotheses ressply1evl.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
ressply1evl.k 𝐾 = ( Base ‘ 𝑆 )
ressply1evl.w 𝑊 = ( Poly1𝑈 )
ressply1evl.u 𝑈 = ( 𝑆s 𝑅 )
ressply1evl.b 𝐵 = ( Base ‘ 𝑊 )
evls1subd.1 𝐷 = ( -g𝑊 )
evls1subd.2 = ( -g𝑆 )
evls1subd.s ( 𝜑𝑆 ∈ CRing )
evls1subd.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evls1subd.m ( 𝜑𝑀𝐵 )
evls1subd.n ( 𝜑𝑁𝐵 )
evls1subd.y ( 𝜑𝐶𝐾 )
Assertion evls1subd ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 𝐷 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐶 ) ( ( 𝑄𝑁 ) ‘ 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ressply1evl.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
2 ressply1evl.k 𝐾 = ( Base ‘ 𝑆 )
3 ressply1evl.w 𝑊 = ( Poly1𝑈 )
4 ressply1evl.u 𝑈 = ( 𝑆s 𝑅 )
5 ressply1evl.b 𝐵 = ( Base ‘ 𝑊 )
6 evls1subd.1 𝐷 = ( -g𝑊 )
7 evls1subd.2 = ( -g𝑆 )
8 evls1subd.s ( 𝜑𝑆 ∈ CRing )
9 evls1subd.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
10 evls1subd.m ( 𝜑𝑀𝐵 )
11 evls1subd.n ( 𝜑𝑁𝐵 )
12 evls1subd.y ( 𝜑𝐶𝐾 )
13 6 oveqi ( 𝑀 𝐷 𝑁 ) = ( 𝑀 ( -g𝑊 ) 𝑁 )
14 eqid ( Poly1𝑆 ) = ( Poly1𝑆 )
15 eqid ( ( Poly1𝑆 ) ↾s 𝐵 ) = ( ( Poly1𝑆 ) ↾s 𝐵 )
16 14 4 3 5 9 15 10 11 ressply1sub ( 𝜑 → ( 𝑀 ( -g𝑊 ) 𝑁 ) = ( 𝑀 ( -g ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) ) 𝑁 ) )
17 13 16 eqtrid ( 𝜑 → ( 𝑀 𝐷 𝑁 ) = ( 𝑀 ( -g ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) ) 𝑁 ) )
18 14 4 3 5 subrgply1 ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubRing ‘ ( Poly1𝑆 ) ) )
19 subrgsubg ( 𝐵 ∈ ( SubRing ‘ ( Poly1𝑆 ) ) → 𝐵 ∈ ( SubGrp ‘ ( Poly1𝑆 ) ) )
20 9 18 19 3syl ( 𝜑𝐵 ∈ ( SubGrp ‘ ( Poly1𝑆 ) ) )
21 eqid ( -g ‘ ( Poly1𝑆 ) ) = ( -g ‘ ( Poly1𝑆 ) )
22 eqid ( -g ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) ) = ( -g ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) )
23 21 15 22 subgsub ( ( 𝐵 ∈ ( SubGrp ‘ ( Poly1𝑆 ) ) ∧ 𝑀𝐵𝑁𝐵 ) → ( 𝑀 ( -g ‘ ( Poly1𝑆 ) ) 𝑁 ) = ( 𝑀 ( -g ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) ) 𝑁 ) )
24 20 10 11 23 syl3anc ( 𝜑 → ( 𝑀 ( -g ‘ ( Poly1𝑆 ) ) 𝑁 ) = ( 𝑀 ( -g ‘ ( ( Poly1𝑆 ) ↾s 𝐵 ) ) 𝑁 ) )
25 17 24 eqtr4d ( 𝜑 → ( 𝑀 𝐷 𝑁 ) = ( 𝑀 ( -g ‘ ( Poly1𝑆 ) ) 𝑁 ) )
26 25 fveq2d ( 𝜑 → ( ( eval1𝑆 ) ‘ ( 𝑀 𝐷 𝑁 ) ) = ( ( eval1𝑆 ) ‘ ( 𝑀 ( -g ‘ ( Poly1𝑆 ) ) 𝑁 ) ) )
27 26 fveq1d ( 𝜑 → ( ( ( eval1𝑆 ) ‘ ( 𝑀 𝐷 𝑁 ) ) ‘ 𝐶 ) = ( ( ( eval1𝑆 ) ‘ ( 𝑀 ( -g ‘ ( Poly1𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) )
28 eqid ( eval1𝑆 ) = ( eval1𝑆 )
29 1 2 3 4 5 28 8 9 ressply1evl ( 𝜑𝑄 = ( ( eval1𝑆 ) ↾ 𝐵 ) )
30 29 fveq1d ( 𝜑 → ( 𝑄 ‘ ( 𝑀 𝐷 𝑁 ) ) = ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ ( 𝑀 𝐷 𝑁 ) ) )
31 4 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
32 3 ply1ring ( 𝑈 ∈ Ring → 𝑊 ∈ Ring )
33 9 31 32 3syl ( 𝜑𝑊 ∈ Ring )
34 33 ringgrpd ( 𝜑𝑊 ∈ Grp )
35 5 6 grpsubcl ( ( 𝑊 ∈ Grp ∧ 𝑀𝐵𝑁𝐵 ) → ( 𝑀 𝐷 𝑁 ) ∈ 𝐵 )
36 34 10 11 35 syl3anc ( 𝜑 → ( 𝑀 𝐷 𝑁 ) ∈ 𝐵 )
37 36 fvresd ( 𝜑 → ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ ( 𝑀 𝐷 𝑁 ) ) = ( ( eval1𝑆 ) ‘ ( 𝑀 𝐷 𝑁 ) ) )
38 30 37 eqtr2d ( 𝜑 → ( ( eval1𝑆 ) ‘ ( 𝑀 𝐷 𝑁 ) ) = ( 𝑄 ‘ ( 𝑀 𝐷 𝑁 ) ) )
39 38 fveq1d ( 𝜑 → ( ( ( eval1𝑆 ) ‘ ( 𝑀 𝐷 𝑁 ) ) ‘ 𝐶 ) = ( ( 𝑄 ‘ ( 𝑀 𝐷 𝑁 ) ) ‘ 𝐶 ) )
40 eqid ( Base ‘ ( Poly1𝑆 ) ) = ( Base ‘ ( Poly1𝑆 ) )
41 eqid ( PwSer1𝑈 ) = ( PwSer1𝑈 )
42 eqid ( Base ‘ ( PwSer1𝑈 ) ) = ( Base ‘ ( PwSer1𝑈 ) )
43 14 4 3 5 9 41 42 40 ressply1bas2 ( 𝜑𝐵 = ( ( Base ‘ ( PwSer1𝑈 ) ) ∩ ( Base ‘ ( Poly1𝑆 ) ) ) )
44 inss2 ( ( Base ‘ ( PwSer1𝑈 ) ) ∩ ( Base ‘ ( Poly1𝑆 ) ) ) ⊆ ( Base ‘ ( Poly1𝑆 ) )
45 43 44 eqsstrdi ( 𝜑𝐵 ⊆ ( Base ‘ ( Poly1𝑆 ) ) )
46 45 10 sseldd ( 𝜑𝑀 ∈ ( Base ‘ ( Poly1𝑆 ) ) )
47 29 fveq1d ( 𝜑 → ( 𝑄𝑀 ) = ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ 𝑀 ) )
48 10 fvresd ( 𝜑 → ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ 𝑀 ) = ( ( eval1𝑆 ) ‘ 𝑀 ) )
49 47 48 eqtr2d ( 𝜑 → ( ( eval1𝑆 ) ‘ 𝑀 ) = ( 𝑄𝑀 ) )
50 49 fveq1d ( 𝜑 → ( ( ( eval1𝑆 ) ‘ 𝑀 ) ‘ 𝐶 ) = ( ( 𝑄𝑀 ) ‘ 𝐶 ) )
51 46 50 jca ( 𝜑 → ( 𝑀 ∈ ( Base ‘ ( Poly1𝑆 ) ) ∧ ( ( ( eval1𝑆 ) ‘ 𝑀 ) ‘ 𝐶 ) = ( ( 𝑄𝑀 ) ‘ 𝐶 ) ) )
52 45 11 sseldd ( 𝜑𝑁 ∈ ( Base ‘ ( Poly1𝑆 ) ) )
53 29 fveq1d ( 𝜑 → ( 𝑄𝑁 ) = ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) )
54 11 fvresd ( 𝜑 → ( ( ( eval1𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) = ( ( eval1𝑆 ) ‘ 𝑁 ) )
55 53 54 eqtr2d ( 𝜑 → ( ( eval1𝑆 ) ‘ 𝑁 ) = ( 𝑄𝑁 ) )
56 55 fveq1d ( 𝜑 → ( ( ( eval1𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄𝑁 ) ‘ 𝐶 ) )
57 52 56 jca ( 𝜑 → ( 𝑁 ∈ ( Base ‘ ( Poly1𝑆 ) ) ∧ ( ( ( eval1𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄𝑁 ) ‘ 𝐶 ) ) )
58 28 14 2 40 8 12 51 57 21 7 evl1subd ( 𝜑 → ( ( 𝑀 ( -g ‘ ( Poly1𝑆 ) ) 𝑁 ) ∈ ( Base ‘ ( Poly1𝑆 ) ) ∧ ( ( ( eval1𝑆 ) ‘ ( 𝑀 ( -g ‘ ( Poly1𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐶 ) ( ( 𝑄𝑁 ) ‘ 𝐶 ) ) ) )
59 58 simprd ( 𝜑 → ( ( ( eval1𝑆 ) ‘ ( 𝑀 ( -g ‘ ( Poly1𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐶 ) ( ( 𝑄𝑁 ) ‘ 𝐶 ) ) )
60 27 39 59 3eqtr3d ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 𝐷 𝑁 ) ) ‘ 𝐶 ) = ( ( ( 𝑄𝑀 ) ‘ 𝐶 ) ( ( 𝑄𝑁 ) ‘ 𝐶 ) ) )