Step |
Hyp |
Ref |
Expression |
1 |
|
evls1fval.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
evls1fval.e |
⊢ 𝐸 = ( 1o evalSub 𝑆 ) |
3 |
|
evls1fval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
evls1val.m |
⊢ 𝑀 = ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) |
5 |
|
evls1val.k |
⊢ 𝐾 = ( Base ‘ 𝑀 ) |
6 |
3
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
7 |
6
|
adantl |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ⊆ 𝐵 ) |
8 |
|
elpwg |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) |
10 |
7 9
|
mpbird |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ∈ 𝒫 𝐵 ) |
11 |
1 2 3
|
evls1fval |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
12 |
10 11
|
syldan |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ) |
13 |
12
|
fveq1d |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ‘ 𝐴 ) = ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ‘ 𝐴 ) ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) = ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ‘ 𝐴 ) ) |
15 |
|
1on |
⊢ 1o ∈ On |
16 |
|
simp1 |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → 𝑆 ∈ CRing ) |
17 |
|
simp2 |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
18 |
2
|
fveq1i |
⊢ ( 𝐸 ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) |
19 |
|
eqid |
⊢ ( 𝑆 ↾s 𝑅 ) = ( 𝑆 ↾s 𝑅 ) |
20 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) |
21 |
18 4 19 20 3
|
evlsrhm |
⊢ ( ( 1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐸 ‘ 𝑅 ) ∈ ( 𝑀 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
22 |
15 16 17 21
|
mp3an2i |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝐸 ‘ 𝑅 ) ∈ ( 𝑀 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
23 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) |
24 |
5 23
|
rhmf |
⊢ ( ( 𝐸 ‘ 𝑅 ) ∈ ( 𝑀 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) → ( 𝐸 ‘ 𝑅 ) : 𝐾 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
25 |
22 24
|
syl |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝐸 ‘ 𝑅 ) : 𝐾 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
26 |
|
simp3 |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) |
27 |
|
fvco3 |
⊢ ( ( ( 𝐸 ‘ 𝑅 ) : 𝐾 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝐴 ∈ 𝐾 ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ) ) |
28 |
25 26 27
|
syl2anc |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 𝐸 ‘ 𝑅 ) ) ‘ 𝐴 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ) ) |
29 |
25 26
|
ffvelrnd |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
30 |
|
ovex |
⊢ ( 𝐵 ↑m 1o ) ∈ V |
31 |
20 3
|
pwsbas |
⊢ ( ( 𝑆 ∈ CRing ∧ ( 𝐵 ↑m 1o ) ∈ V ) → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
32 |
16 30 31
|
sylancl |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
33 |
29 32
|
eleqtrrd |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
34 |
|
coeq1 |
⊢ ( 𝑥 = ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
35 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
36 |
|
fvex |
⊢ ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∈ V |
37 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
38 |
37
|
mptex |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ∈ V |
39 |
36 38
|
coex |
⊢ ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ∈ V |
40 |
34 35 39
|
fvmpt |
⊢ ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ) = ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
41 |
33 40
|
syl |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ‘ ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ) = ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
42 |
14 28 41
|
3eqtrd |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ 𝐴 ∈ 𝐾 ) → ( 𝑄 ‘ 𝐴 ) = ( ( ( 𝐸 ‘ 𝑅 ) ‘ 𝐴 ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |