Metamath Proof Explorer


Theorem evls1var

Description: Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019)

Ref Expression
Hypotheses evls1var.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
evls1var.x 𝑋 = ( var1𝑈 )
evls1var.u 𝑈 = ( 𝑆s 𝑅 )
evls1var.b 𝐵 = ( Base ‘ 𝑆 )
evls1var.s ( 𝜑𝑆 ∈ CRing )
evls1var.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
Assertion evls1var ( 𝜑 → ( 𝑄𝑋 ) = ( I ↾ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 evls1var.q 𝑄 = ( 𝑆 evalSub1 𝑅 )
2 evls1var.x 𝑋 = ( var1𝑈 )
3 evls1var.u 𝑈 = ( 𝑆s 𝑅 )
4 evls1var.b 𝐵 = ( Base ‘ 𝑆 )
5 evls1var.s ( 𝜑𝑆 ∈ CRing )
6 evls1var.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
7 eqid ( var1𝑆 ) = ( var1𝑆 )
8 7 6 3 subrgvr1 ( 𝜑 → ( var1𝑆 ) = ( var1𝑈 ) )
9 2 8 eqtr4id ( 𝜑𝑋 = ( var1𝑆 ) )
10 9 fveq2d ( 𝜑 → ( 𝑄𝑋 ) = ( 𝑄 ‘ ( var1𝑆 ) ) )
11 eqid ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 )
12 eqid ( 1o eval 𝑆 ) = ( 1o eval 𝑆 )
13 eqid ( 1o mVar 𝑈 ) = ( 1o mVar 𝑈 )
14 1on 1o ∈ On
15 14 a1i ( 𝜑 → 1o ∈ On )
16 0lt1o ∅ ∈ 1o
17 16 a1i ( 𝜑 → ∅ ∈ 1o )
18 11 12 13 3 4 15 5 6 17 evlsvarsrng ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) = ( ( 1o eval 𝑆 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) )
19 7 vr1val ( var1𝑆 ) = ( ( 1o mVar 𝑆 ) ‘ ∅ )
20 eqid ( 1o mVar 𝑆 ) = ( 1o mVar 𝑆 )
21 20 15 6 3 subrgmvr ( 𝜑 → ( 1o mVar 𝑆 ) = ( 1o mVar 𝑈 ) )
22 21 fveq1d ( 𝜑 → ( ( 1o mVar 𝑆 ) ‘ ∅ ) = ( ( 1o mVar 𝑈 ) ‘ ∅ ) )
23 19 22 eqtrid ( 𝜑 → ( var1𝑆 ) = ( ( 1o mVar 𝑈 ) ‘ ∅ ) )
24 23 fveq2d ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1𝑆 ) ) = ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) )
25 23 fveq2d ( 𝜑 → ( ( 1o eval 𝑆 ) ‘ ( var1𝑆 ) ) = ( ( 1o eval 𝑆 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) )
26 18 24 25 3eqtr4d ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1𝑆 ) ) = ( ( 1o eval 𝑆 ) ‘ ( var1𝑆 ) ) )
27 26 coeq1d ( 𝜑 → ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1𝑆 ) ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 1o eval 𝑆 ) ‘ ( var1𝑆 ) ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) )
28 eqid ( Poly1𝑈 ) = ( Poly1𝑈 )
29 eqid ( Poly1 ‘ ( 𝑆s 𝑅 ) ) = ( Poly1 ‘ ( 𝑆s 𝑅 ) )
30 3 fveq2i ( Poly1𝑈 ) = ( Poly1 ‘ ( 𝑆s 𝑅 ) )
31 30 fveq2i ( Base ‘ ( Poly1𝑈 ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑆s 𝑅 ) ) )
32 29 31 ply1bas ( Base ‘ ( Poly1𝑈 ) ) = ( Base ‘ ( 1o mPoly ( 𝑆s 𝑅 ) ) )
33 32 eqcomi ( Base ‘ ( 1o mPoly ( 𝑆s 𝑅 ) ) ) = ( Base ‘ ( Poly1𝑈 ) )
34 7 6 3 28 33 subrgvr1cl ( 𝜑 → ( var1𝑆 ) ∈ ( Base ‘ ( 1o mPoly ( 𝑆s 𝑅 ) ) ) )
35 eqid ( 1o evalSub 𝑆 ) = ( 1o evalSub 𝑆 )
36 eqid ( 1o mPoly ( 𝑆s 𝑅 ) ) = ( 1o mPoly ( 𝑆s 𝑅 ) )
37 eqid ( Base ‘ ( 1o mPoly ( 𝑆s 𝑅 ) ) ) = ( Base ‘ ( 1o mPoly ( 𝑆s 𝑅 ) ) )
38 1 35 4 36 37 evls1val ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ ( var1𝑆 ) ∈ ( Base ‘ ( 1o mPoly ( 𝑆s 𝑅 ) ) ) ) → ( 𝑄 ‘ ( var1𝑆 ) ) = ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1𝑆 ) ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) )
39 5 6 34 38 syl3anc ( 𝜑 → ( 𝑄 ‘ ( var1𝑆 ) ) = ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1𝑆 ) ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) )
40 crngring ( 𝑆 ∈ CRing → 𝑆 ∈ Ring )
41 eqid ( Poly1𝑆 ) = ( Poly1𝑆 )
42 eqid ( Base ‘ ( Poly1𝑆 ) ) = ( Base ‘ ( Poly1𝑆 ) )
43 41 42 ply1bas ( Base ‘ ( Poly1𝑆 ) ) = ( Base ‘ ( 1o mPoly 𝑆 ) )
44 43 eqcomi ( Base ‘ ( 1o mPoly 𝑆 ) ) = ( Base ‘ ( Poly1𝑆 ) )
45 7 41 44 vr1cl ( 𝑆 ∈ Ring → ( var1𝑆 ) ∈ ( Base ‘ ( 1o mPoly 𝑆 ) ) )
46 5 40 45 3syl ( 𝜑 → ( var1𝑆 ) ∈ ( Base ‘ ( 1o mPoly 𝑆 ) ) )
47 eqid ( eval1𝑆 ) = ( eval1𝑆 )
48 eqid ( 1o mPoly 𝑆 ) = ( 1o mPoly 𝑆 )
49 eqid ( Base ‘ ( 1o mPoly 𝑆 ) ) = ( Base ‘ ( 1o mPoly 𝑆 ) )
50 47 12 4 48 49 evl1val ( ( 𝑆 ∈ CRing ∧ ( var1𝑆 ) ∈ ( Base ‘ ( 1o mPoly 𝑆 ) ) ) → ( ( eval1𝑆 ) ‘ ( var1𝑆 ) ) = ( ( ( 1o eval 𝑆 ) ‘ ( var1𝑆 ) ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) )
51 5 46 50 syl2anc ( 𝜑 → ( ( eval1𝑆 ) ‘ ( var1𝑆 ) ) = ( ( ( 1o eval 𝑆 ) ‘ ( var1𝑆 ) ) ∘ ( 𝑦𝐵 ↦ ( 1o × { 𝑦 } ) ) ) )
52 27 39 51 3eqtr4d ( 𝜑 → ( 𝑄 ‘ ( var1𝑆 ) ) = ( ( eval1𝑆 ) ‘ ( var1𝑆 ) ) )
53 47 7 4 evl1var ( 𝑆 ∈ CRing → ( ( eval1𝑆 ) ‘ ( var1𝑆 ) ) = ( I ↾ 𝐵 ) )
54 5 53 syl ( 𝜑 → ( ( eval1𝑆 ) ‘ ( var1𝑆 ) ) = ( I ↾ 𝐵 ) )
55 10 52 54 3eqtrd ( 𝜑 → ( 𝑄𝑋 ) = ( I ↾ 𝐵 ) )