| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1var.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
| 2 |
|
evls1var.x |
⊢ 𝑋 = ( var1 ‘ 𝑈 ) |
| 3 |
|
evls1var.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 4 |
|
evls1var.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 5 |
|
evls1var.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 6 |
|
evls1var.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 7 |
|
eqid |
⊢ ( var1 ‘ 𝑆 ) = ( var1 ‘ 𝑆 ) |
| 8 |
7 6 3
|
subrgvr1 |
⊢ ( 𝜑 → ( var1 ‘ 𝑆 ) = ( var1 ‘ 𝑈 ) ) |
| 9 |
2 8
|
eqtr4id |
⊢ ( 𝜑 → 𝑋 = ( var1 ‘ 𝑆 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑋 ) = ( 𝑄 ‘ ( var1 ‘ 𝑆 ) ) ) |
| 11 |
|
eqid |
⊢ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) |
| 12 |
|
eqid |
⊢ ( 1o eval 𝑆 ) = ( 1o eval 𝑆 ) |
| 13 |
|
eqid |
⊢ ( 1o mVar 𝑈 ) = ( 1o mVar 𝑈 ) |
| 14 |
|
1on |
⊢ 1o ∈ On |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
| 16 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 1o ) |
| 18 |
11 12 13 3 4 15 5 6 17
|
evlsvarsrng |
⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) = ( ( 1o eval 𝑆 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) ) |
| 19 |
7
|
vr1val |
⊢ ( var1 ‘ 𝑆 ) = ( ( 1o mVar 𝑆 ) ‘ ∅ ) |
| 20 |
|
eqid |
⊢ ( 1o mVar 𝑆 ) = ( 1o mVar 𝑆 ) |
| 21 |
20 15 6 3
|
subrgmvr |
⊢ ( 𝜑 → ( 1o mVar 𝑆 ) = ( 1o mVar 𝑈 ) ) |
| 22 |
21
|
fveq1d |
⊢ ( 𝜑 → ( ( 1o mVar 𝑆 ) ‘ ∅ ) = ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) |
| 23 |
19 22
|
eqtrid |
⊢ ( 𝜑 → ( var1 ‘ 𝑆 ) = ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) |
| 24 |
23
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1 ‘ 𝑆 ) ) = ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) ) |
| 25 |
23
|
fveq2d |
⊢ ( 𝜑 → ( ( 1o eval 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) = ( ( 1o eval 𝑆 ) ‘ ( ( 1o mVar 𝑈 ) ‘ ∅ ) ) ) |
| 26 |
18 24 25
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1 ‘ 𝑆 ) ) = ( ( 1o eval 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) ) |
| 27 |
26
|
coeq1d |
⊢ ( 𝜑 → ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) = ( ( ( 1o eval 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 28 |
|
eqid |
⊢ ( Poly1 ‘ 𝑈 ) = ( Poly1 ‘ 𝑈 ) |
| 29 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝑆 ↾s 𝑅 ) ) = ( Poly1 ‘ ( 𝑆 ↾s 𝑅 ) ) |
| 30 |
3
|
fveq2i |
⊢ ( Poly1 ‘ 𝑈 ) = ( Poly1 ‘ ( 𝑆 ↾s 𝑅 ) ) |
| 31 |
30
|
fveq2i |
⊢ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝑅 ) ) ) |
| 32 |
29 31
|
ply1bas |
⊢ ( Base ‘ ( Poly1 ‘ 𝑈 ) ) = ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
| 33 |
32
|
eqcomi |
⊢ ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝑈 ) ) |
| 34 |
7 6 3 28 33
|
subrgvr1cl |
⊢ ( 𝜑 → ( var1 ‘ 𝑆 ) ∈ ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 35 |
|
eqid |
⊢ ( 1o evalSub 𝑆 ) = ( 1o evalSub 𝑆 ) |
| 36 |
|
eqid |
⊢ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) = ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) |
| 37 |
|
eqid |
⊢ ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
| 38 |
1 35 4 36 37
|
evls1val |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ∧ ( var1 ‘ 𝑆 ) ∈ ( Base ‘ ( 1o mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) → ( 𝑄 ‘ ( var1 ‘ 𝑆 ) ) = ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 39 |
5 6 34 38
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ‘ ( var1 ‘ 𝑆 ) ) = ( ( ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 40 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
| 41 |
|
eqid |
⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) |
| 42 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
| 43 |
41 42
|
ply1bas |
⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( 1o mPoly 𝑆 ) ) |
| 44 |
43
|
eqcomi |
⊢ ( Base ‘ ( 1o mPoly 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
| 45 |
7 41 44
|
vr1cl |
⊢ ( 𝑆 ∈ Ring → ( var1 ‘ 𝑆 ) ∈ ( Base ‘ ( 1o mPoly 𝑆 ) ) ) |
| 46 |
5 40 45
|
3syl |
⊢ ( 𝜑 → ( var1 ‘ 𝑆 ) ∈ ( Base ‘ ( 1o mPoly 𝑆 ) ) ) |
| 47 |
|
eqid |
⊢ ( eval1 ‘ 𝑆 ) = ( eval1 ‘ 𝑆 ) |
| 48 |
|
eqid |
⊢ ( 1o mPoly 𝑆 ) = ( 1o mPoly 𝑆 ) |
| 49 |
|
eqid |
⊢ ( Base ‘ ( 1o mPoly 𝑆 ) ) = ( Base ‘ ( 1o mPoly 𝑆 ) ) |
| 50 |
47 12 4 48 49
|
evl1val |
⊢ ( ( 𝑆 ∈ CRing ∧ ( var1 ‘ 𝑆 ) ∈ ( Base ‘ ( 1o mPoly 𝑆 ) ) ) → ( ( eval1 ‘ 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) = ( ( ( 1o eval 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 51 |
5 46 50
|
syl2anc |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) = ( ( ( 1o eval 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 52 |
27 39 51
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( var1 ‘ 𝑆 ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) ) |
| 53 |
47 7 4
|
evl1var |
⊢ ( 𝑆 ∈ CRing → ( ( eval1 ‘ 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) = ( I ↾ 𝐵 ) ) |
| 54 |
5 53
|
syl |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( var1 ‘ 𝑆 ) ) = ( I ↾ 𝐵 ) ) |
| 55 |
10 52 54
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |