Step |
Hyp |
Ref |
Expression |
1 |
|
ressply1evl2.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
2 |
|
ressply1evl2.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
3 |
|
ressply1evl2.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
4 |
|
ressply1evl2.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
ressply1evl2.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
6 |
|
evls1vsca.1 |
⊢ × = ( ·𝑠 ‘ 𝑊 ) |
7 |
|
evls1vsca.2 |
⊢ · = ( .r ‘ 𝑆 ) |
8 |
|
evls1vsca.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
evls1vsca.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
10 |
|
evls1vsca.m |
⊢ ( 𝜑 → 𝐴 ∈ 𝑅 ) |
11 |
|
evls1vsca.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
12 |
|
evls1vsca.y |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
13 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
14 |
|
eqid |
⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) |
15 |
|
eqid |
⊢ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) = ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) |
16 |
14 4 3 5 9 15
|
ressply1vsca |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑅 ∧ 𝑁 ∈ 𝐵 ) ) → ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝑁 ) = ( 𝐴 ( ·𝑠 ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) ) |
17 |
13 10 11 16
|
syl12anc |
⊢ ( 𝜑 → ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝑁 ) = ( 𝐴 ( ·𝑠 ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) ) |
18 |
6
|
oveqi |
⊢ ( 𝐴 × 𝑁 ) = ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝑁 ) |
19 |
5
|
fvexi |
⊢ 𝐵 ∈ V |
20 |
|
eqid |
⊢ ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) = ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) |
21 |
15 20
|
ressvsca |
⊢ ( 𝐵 ∈ V → ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) = ( ·𝑠 ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) ) |
22 |
19 21
|
ax-mp |
⊢ ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) = ( ·𝑠 ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) |
23 |
22
|
oveqi |
⊢ ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) = ( 𝐴 ( ·𝑠 ‘ ( ( Poly1 ‘ 𝑆 ) ↾s 𝐵 ) ) 𝑁 ) |
24 |
17 18 23
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐴 × 𝑁 ) = ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 × 𝑁 ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ) |
26 |
25
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 × 𝑁 ) ) ‘ 𝐶 ) = ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) ) |
27 |
|
eqid |
⊢ ( eval1 ‘ 𝑆 ) = ( eval1 ‘ 𝑆 ) |
28 |
1 2 3 4 5 27 8 9
|
ressply1evl |
⊢ ( 𝜑 → 𝑄 = ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ) |
29 |
28
|
fveq1d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 × 𝑁 ) ) = ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ ( 𝐴 × 𝑁 ) ) ) |
30 |
4
|
subrgcrng |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
31 |
8 9 30
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
32 |
|
crngring |
⊢ ( 𝑈 ∈ CRing → 𝑈 ∈ Ring ) |
33 |
3
|
ply1lmod |
⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ LMod ) |
34 |
31 32 33
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
35 |
2
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
36 |
9 35
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
37 |
4 2
|
ressbas2 |
⊢ ( 𝑅 ⊆ 𝐾 → 𝑅 = ( Base ‘ 𝑈 ) ) |
38 |
36 37
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
39 |
4
|
ovexi |
⊢ 𝑈 ∈ V |
40 |
3
|
ply1sca |
⊢ ( 𝑈 ∈ V → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
41 |
39 40
|
mp1i |
⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
42 |
41
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
43 |
38 42
|
eqtrd |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
44 |
10 43
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
45 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
46 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
47 |
5 45 6 46
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑁 ∈ 𝐵 ) → ( 𝐴 × 𝑁 ) ∈ 𝐵 ) |
48 |
34 44 11 47
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 × 𝑁 ) ∈ 𝐵 ) |
49 |
48
|
fvresd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ ( 𝐴 × 𝑁 ) ) = ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 × 𝑁 ) ) ) |
50 |
29 49
|
eqtr2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 × 𝑁 ) ) = ( 𝑄 ‘ ( 𝐴 × 𝑁 ) ) ) |
51 |
50
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 × 𝑁 ) ) ‘ 𝐶 ) = ( ( 𝑄 ‘ ( 𝐴 × 𝑁 ) ) ‘ 𝐶 ) ) |
52 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
53 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑈 ) = ( PwSer1 ‘ 𝑈 ) |
54 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) |
55 |
14 4 3 5 9 53 54 52
|
ressply1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ) |
56 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) |
57 |
55 56
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
58 |
57 11
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
59 |
28
|
fveq1d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) = ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) ) |
60 |
11
|
fvresd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ↾ 𝐵 ) ‘ 𝑁 ) = ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ) |
61 |
59 60
|
eqtr2d |
⊢ ( 𝜑 → ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) = ( 𝑄 ‘ 𝑁 ) ) |
62 |
61
|
fveq1d |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) |
63 |
58 62
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ 𝑁 ) ‘ 𝐶 ) = ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
64 |
36 10
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
65 |
27 14 2 52 8 12 63 64 20 7
|
evl1vsd |
⊢ ( 𝜑 → ( ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ∈ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( 𝐴 · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) ) |
66 |
65
|
simprd |
⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑆 ) ‘ ( 𝐴 ( ·𝑠 ‘ ( Poly1 ‘ 𝑆 ) ) 𝑁 ) ) ‘ 𝐶 ) = ( 𝐴 · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |
67 |
26 51 66
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 × 𝑁 ) ) ‘ 𝐶 ) = ( 𝐴 · ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐶 ) ) ) |