Step |
Hyp |
Ref |
Expression |
1 |
|
evlsbagval.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsbagval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsbagval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
evlsbagval.w |
⊢ 𝑊 = ( Base ‘ 𝑃 ) |
5 |
|
evlsbagval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
evlsbagval.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) |
7 |
|
evlsbagval.e |
⊢ ↑ = ( .g ‘ 𝑀 ) |
8 |
|
evlsbagval.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
9 |
|
evlsbagval.o |
⊢ 1 = ( 1r ‘ 𝑈 ) |
10 |
|
evlsbagval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
11 |
|
evlsbagval.f |
⊢ 𝐹 = ( 𝑠 ∈ 𝐷 ↦ if ( 𝑠 = 𝐵 , 1 , 0 ) ) |
12 |
|
evlsbagval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
13 |
|
evlsbagval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
14 |
|
evlsbagval.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
15 |
|
evlsbagval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
16 |
|
evlsbagval.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
17 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ∈ V ) |
18 |
|
ovexd |
⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) |
19 |
10 18
|
rabexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
20 |
3
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
21 |
14 20
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
23 |
22 9
|
ringidcl |
⊢ ( 𝑈 ∈ Ring → 1 ∈ ( Base ‘ 𝑈 ) ) |
24 |
21 23
|
syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑈 ) ) |
25 |
22 8
|
ring0cl |
⊢ ( 𝑈 ∈ Ring → 0 ∈ ( Base ‘ 𝑈 ) ) |
26 |
21 25
|
syl |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑈 ) ) |
27 |
24 26
|
ifcld |
⊢ ( 𝜑 → if ( 𝑠 = 𝐵 , 1 , 0 ) ∈ ( Base ‘ 𝑈 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐷 ) → if ( 𝑠 = 𝐵 , 1 , 0 ) ∈ ( Base ‘ 𝑈 ) ) |
29 |
28 11
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) |
30 |
17 19 29
|
elmapdd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐷 ) ) |
31 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑈 ) = ( 𝐼 mPwSer 𝑈 ) |
32 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) |
33 |
31 22 10 32 12
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) = ( ( Base ‘ 𝑈 ) ↑m 𝐷 ) ) |
34 |
30 33
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) ) |
35 |
19 26 11
|
sniffsupp |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
36 |
2 31 32 8 4
|
mplelbas |
⊢ ( 𝐹 ∈ 𝑊 ↔ ( 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) ∧ 𝐹 finSupp 0 ) ) |
37 |
34 35 36
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
38 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
39 |
1 2 4 3 10 5 6 7 38 12 13 14 37 15
|
evlsvvval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) ) |
40 |
16
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ 𝐷 ) |
41 |
|
resmpt |
⊢ ( { 𝐵 } ⊆ 𝐷 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) = ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
42 |
40 41
|
syl |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) = ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
43 |
42
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 Σg ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) ) = ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) ) |
44 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
45 |
13
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
46 |
45
|
ringcmnd |
⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
47 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ Ring ) |
48 |
3
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
49 |
5
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
50 |
48 49
|
eqsstrrd |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
51 |
14 50
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
52 |
29 51
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐾 ) |
53 |
52
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐾 ) |
54 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
55 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ CRing ) |
56 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) |
58 |
10 5 6 7 54 55 56 57
|
evlsvvvallem |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
59 |
5 38 47 53 58
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ∈ 𝐾 ) |
60 |
59
|
fmpttd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) : 𝐷 ⟶ 𝐾 ) |
61 |
|
eldifsnneq |
⊢ ( 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) → ¬ 𝑏 = 𝐵 ) |
62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ¬ 𝑏 = 𝐵 ) |
63 |
62
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → if ( 𝑏 = 𝐵 , 1 , 0 ) = 0 ) |
64 |
|
eqeq1 |
⊢ ( 𝑠 = 𝑏 → ( 𝑠 = 𝐵 ↔ 𝑏 = 𝐵 ) ) |
65 |
64
|
ifbid |
⊢ ( 𝑠 = 𝑏 → if ( 𝑠 = 𝐵 , 1 , 0 ) = if ( 𝑏 = 𝐵 , 1 , 0 ) ) |
66 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) → 𝑏 ∈ 𝐷 ) |
67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → 𝑏 ∈ 𝐷 ) |
68 |
9
|
fvexi |
⊢ 1 ∈ V |
69 |
8
|
fvexi |
⊢ 0 ∈ V |
70 |
68 69
|
ifex |
⊢ if ( 𝑏 = 𝐵 , 1 , 0 ) ∈ V |
71 |
70
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → if ( 𝑏 = 𝐵 , 1 , 0 ) ∈ V ) |
72 |
11 65 67 71
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 𝐹 ‘ 𝑏 ) = if ( 𝑏 = 𝐵 , 1 , 0 ) ) |
73 |
3 44
|
subrg0 |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
74 |
73 8
|
eqtr4di |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = 0 ) |
75 |
14 74
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = 0 ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 0g ‘ 𝑆 ) = 0 ) |
77 |
63 72 76
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑆 ) ) |
78 |
77
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 0g ‘ 𝑆 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
79 |
66 58
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
80 |
5 38 44
|
ringlz |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) → ( ( 0g ‘ 𝑆 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
81 |
45 79 80
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( 0g ‘ 𝑆 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
82 |
78 81
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
83 |
82 19
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ { 𝐵 } ) |
84 |
10 2 3 4 5 6 7 38 12 13 14 37 15
|
evlsvvvallem2 |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
85 |
5 44 46 19 60 83 84
|
gsumres |
⊢ ( 𝜑 → ( 𝑆 Σg ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) ) |
86 |
13
|
crnggrpd |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
87 |
86
|
grpmndd |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
88 |
52 16
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ 𝐾 ) |
89 |
10 5 6 7 12 13 15 16
|
evlsvvvallem |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
90 |
5 38 45 88 89
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ∈ 𝐾 ) |
91 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝐵 ) ) |
92 |
|
fveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ‘ 𝑣 ) = ( 𝐵 ‘ 𝑣 ) ) |
93 |
92
|
oveq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) = ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) |
94 |
93
|
mpteq2dv |
⊢ ( 𝑏 = 𝐵 → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
95 |
94
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
96 |
91 95
|
oveq12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
97 |
5 96
|
gsumsn |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐵 ∈ 𝐷 ∧ ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ∈ 𝐾 ) → ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) = ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
98 |
87 16 90 97
|
syl3anc |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) = ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
99 |
|
iftrue |
⊢ ( 𝑠 = 𝐵 → if ( 𝑠 = 𝐵 , 1 , 0 ) = 1 ) |
100 |
68
|
a1i |
⊢ ( 𝜑 → 1 ∈ V ) |
101 |
11 99 16 100
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = 1 ) |
102 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
103 |
3 102
|
subrg1 |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑈 ) ) |
104 |
14 103
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑈 ) ) |
105 |
9 101 104
|
3eqtr4a |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = ( 1r ‘ 𝑆 ) ) |
106 |
105
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
107 |
5 38 102 45 89
|
ringlidmd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑆 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
108 |
98 106 107
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
109 |
43 85 108
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) ( .r ‘ 𝑆 ) ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
110 |
39 109
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
111 |
37 110
|
jca |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ∧ ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |