Metamath Proof Explorer


Theorem evlsbagval

Description: Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since .0. and .1. using U instead of S may not be convenient. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses evlsbagval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlsbagval.p 𝑃 = ( 𝐼 mPoly 𝑈 )
evlsbagval.u 𝑈 = ( 𝑆s 𝑅 )
evlsbagval.w 𝑊 = ( Base ‘ 𝑃 )
evlsbagval.k 𝐾 = ( Base ‘ 𝑆 )
evlsbagval.m 𝑀 = ( mulGrp ‘ 𝑆 )
evlsbagval.e = ( .g𝑀 )
evlsbagval.z 0 = ( 0g𝑈 )
evlsbagval.o 1 = ( 1r𝑈 )
evlsbagval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
evlsbagval.f 𝐹 = ( 𝑠𝐷 ↦ if ( 𝑠 = 𝐵 , 1 , 0 ) )
evlsbagval.i ( 𝜑𝐼𝑉 )
evlsbagval.s ( 𝜑𝑆 ∈ CRing )
evlsbagval.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evlsbagval.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
evlsbagval.b ( 𝜑𝐵𝐷 )
Assertion evlsbagval ( 𝜑 → ( 𝐹𝑊 ∧ ( ( 𝑄𝐹 ) ‘ 𝐴 ) = ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 evlsbagval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlsbagval.p 𝑃 = ( 𝐼 mPoly 𝑈 )
3 evlsbagval.u 𝑈 = ( 𝑆s 𝑅 )
4 evlsbagval.w 𝑊 = ( Base ‘ 𝑃 )
5 evlsbagval.k 𝐾 = ( Base ‘ 𝑆 )
6 evlsbagval.m 𝑀 = ( mulGrp ‘ 𝑆 )
7 evlsbagval.e = ( .g𝑀 )
8 evlsbagval.z 0 = ( 0g𝑈 )
9 evlsbagval.o 1 = ( 1r𝑈 )
10 evlsbagval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
11 evlsbagval.f 𝐹 = ( 𝑠𝐷 ↦ if ( 𝑠 = 𝐵 , 1 , 0 ) )
12 evlsbagval.i ( 𝜑𝐼𝑉 )
13 evlsbagval.s ( 𝜑𝑆 ∈ CRing )
14 evlsbagval.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
15 evlsbagval.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
16 evlsbagval.b ( 𝜑𝐵𝐷 )
17 fvexd ( 𝜑 → ( Base ‘ 𝑈 ) ∈ V )
18 ovexd ( 𝜑 → ( ℕ0m 𝐼 ) ∈ V )
19 10 18 rabexd ( 𝜑𝐷 ∈ V )
20 3 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
21 14 20 syl ( 𝜑𝑈 ∈ Ring )
22 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
23 22 9 ringidcl ( 𝑈 ∈ Ring → 1 ∈ ( Base ‘ 𝑈 ) )
24 21 23 syl ( 𝜑1 ∈ ( Base ‘ 𝑈 ) )
25 22 8 ring0cl ( 𝑈 ∈ Ring → 0 ∈ ( Base ‘ 𝑈 ) )
26 21 25 syl ( 𝜑0 ∈ ( Base ‘ 𝑈 ) )
27 24 26 ifcld ( 𝜑 → if ( 𝑠 = 𝐵 , 1 , 0 ) ∈ ( Base ‘ 𝑈 ) )
28 27 adantr ( ( 𝜑𝑠𝐷 ) → if ( 𝑠 = 𝐵 , 1 , 0 ) ∈ ( Base ‘ 𝑈 ) )
29 28 11 fmptd ( 𝜑𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) )
30 17 19 29 elmapdd ( 𝜑𝐹 ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐷 ) )
31 eqid ( 𝐼 mPwSer 𝑈 ) = ( 𝐼 mPwSer 𝑈 )
32 eqid ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑈 ) )
33 31 22 10 32 12 psrbas ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) = ( ( Base ‘ 𝑈 ) ↑m 𝐷 ) )
34 30 33 eleqtrrd ( 𝜑𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) )
35 19 26 11 sniffsupp ( 𝜑𝐹 finSupp 0 )
36 2 31 32 8 4 mplelbas ( 𝐹𝑊 ↔ ( 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) ∧ 𝐹 finSupp 0 ) )
37 34 35 36 sylanbrc ( 𝜑𝐹𝑊 )
38 eqid ( .r𝑆 ) = ( .r𝑆 )
39 1 2 4 3 10 5 6 7 38 12 13 14 37 15 evlsvvval ( 𝜑 → ( ( 𝑄𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ) )
40 16 snssd ( 𝜑 → { 𝐵 } ⊆ 𝐷 )
41 resmpt ( { 𝐵 } ⊆ 𝐷 → ( ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) = ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) )
42 40 41 syl ( 𝜑 → ( ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) = ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) )
43 42 oveq2d ( 𝜑 → ( 𝑆 Σg ( ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) ) = ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ) )
44 eqid ( 0g𝑆 ) = ( 0g𝑆 )
45 13 crngringd ( 𝜑𝑆 ∈ Ring )
46 45 ringcmnd ( 𝜑𝑆 ∈ CMnd )
47 45 adantr ( ( 𝜑𝑏𝐷 ) → 𝑆 ∈ Ring )
48 3 subrgbas ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) )
49 5 subrgss ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅𝐾 )
50 48 49 eqsstrrd ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( Base ‘ 𝑈 ) ⊆ 𝐾 )
51 14 50 syl ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 )
52 29 51 fssd ( 𝜑𝐹 : 𝐷𝐾 )
53 52 ffvelcdmda ( ( 𝜑𝑏𝐷 ) → ( 𝐹𝑏 ) ∈ 𝐾 )
54 12 adantr ( ( 𝜑𝑏𝐷 ) → 𝐼𝑉 )
55 13 adantr ( ( 𝜑𝑏𝐷 ) → 𝑆 ∈ CRing )
56 15 adantr ( ( 𝜑𝑏𝐷 ) → 𝐴 ∈ ( 𝐾m 𝐼 ) )
57 simpr ( ( 𝜑𝑏𝐷 ) → 𝑏𝐷 )
58 10 5 6 7 54 55 56 57 evlsvvvallem ( ( 𝜑𝑏𝐷 ) → ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ∈ 𝐾 )
59 5 38 47 53 58 ringcld ( ( 𝜑𝑏𝐷 ) → ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ∈ 𝐾 )
60 59 fmpttd ( 𝜑 → ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) : 𝐷𝐾 )
61 eldifsnneq ( 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) → ¬ 𝑏 = 𝐵 )
62 61 adantl ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ¬ 𝑏 = 𝐵 )
63 62 iffalsed ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → if ( 𝑏 = 𝐵 , 1 , 0 ) = 0 )
64 eqeq1 ( 𝑠 = 𝑏 → ( 𝑠 = 𝐵𝑏 = 𝐵 ) )
65 64 ifbid ( 𝑠 = 𝑏 → if ( 𝑠 = 𝐵 , 1 , 0 ) = if ( 𝑏 = 𝐵 , 1 , 0 ) )
66 eldifi ( 𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) → 𝑏𝐷 )
67 66 adantl ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → 𝑏𝐷 )
68 9 fvexi 1 ∈ V
69 8 fvexi 0 ∈ V
70 68 69 ifex if ( 𝑏 = 𝐵 , 1 , 0 ) ∈ V
71 70 a1i ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → if ( 𝑏 = 𝐵 , 1 , 0 ) ∈ V )
72 11 65 67 71 fvmptd3 ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 𝐹𝑏 ) = if ( 𝑏 = 𝐵 , 1 , 0 ) )
73 3 44 subrg0 ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g𝑆 ) = ( 0g𝑈 ) )
74 73 8 eqtr4di ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g𝑆 ) = 0 )
75 14 74 syl ( 𝜑 → ( 0g𝑆 ) = 0 )
76 75 adantr ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 0g𝑆 ) = 0 )
77 63 72 76 3eqtr4d ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 𝐹𝑏 ) = ( 0g𝑆 ) )
78 77 oveq1d ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) = ( ( 0g𝑆 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) )
79 66 58 sylan2 ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ∈ 𝐾 )
80 5 38 44 ringlz ( ( 𝑆 ∈ Ring ∧ ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ∈ 𝐾 ) → ( ( 0g𝑆 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) = ( 0g𝑆 ) )
81 45 79 80 syl2an2r ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( 0g𝑆 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) = ( 0g𝑆 ) )
82 78 81 eqtrd ( ( 𝜑𝑏 ∈ ( 𝐷 ∖ { 𝐵 } ) ) → ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) = ( 0g𝑆 ) )
83 82 19 suppss2 ( 𝜑 → ( ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) supp ( 0g𝑆 ) ) ⊆ { 𝐵 } )
84 10 2 3 4 5 6 7 38 12 13 14 37 15 evlsvvvallem2 ( 𝜑 → ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) finSupp ( 0g𝑆 ) )
85 5 44 46 19 60 83 84 gsumres ( 𝜑 → ( 𝑆 Σg ( ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ↾ { 𝐵 } ) ) = ( 𝑆 Σg ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ) )
86 13 crnggrpd ( 𝜑𝑆 ∈ Grp )
87 86 grpmndd ( 𝜑𝑆 ∈ Mnd )
88 52 16 ffvelcdmd ( 𝜑 → ( 𝐹𝐵 ) ∈ 𝐾 )
89 10 5 6 7 12 13 15 16 evlsvvvallem ( 𝜑 → ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ∈ 𝐾 )
90 5 38 45 88 89 ringcld ( 𝜑 → ( ( 𝐹𝐵 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ∈ 𝐾 )
91 fveq2 ( 𝑏 = 𝐵 → ( 𝐹𝑏 ) = ( 𝐹𝐵 ) )
92 fveq1 ( 𝑏 = 𝐵 → ( 𝑏𝑣 ) = ( 𝐵𝑣 ) )
93 92 oveq1d ( 𝑏 = 𝐵 → ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) = ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) )
94 93 mpteq2dv ( 𝑏 = 𝐵 → ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) = ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) )
95 94 oveq2d ( 𝑏 = 𝐵 → ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) = ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) )
96 91 95 oveq12d ( 𝑏 = 𝐵 → ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) = ( ( 𝐹𝐵 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ) )
97 5 96 gsumsn ( ( 𝑆 ∈ Mnd ∧ 𝐵𝐷 ∧ ( ( 𝐹𝐵 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ∈ 𝐾 ) → ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ) = ( ( 𝐹𝐵 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ) )
98 87 16 90 97 syl3anc ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ) = ( ( 𝐹𝐵 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ) )
99 iftrue ( 𝑠 = 𝐵 → if ( 𝑠 = 𝐵 , 1 , 0 ) = 1 )
100 68 a1i ( 𝜑1 ∈ V )
101 11 99 16 100 fvmptd3 ( 𝜑 → ( 𝐹𝐵 ) = 1 )
102 eqid ( 1r𝑆 ) = ( 1r𝑆 )
103 3 102 subrg1 ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 1r𝑆 ) = ( 1r𝑈 ) )
104 14 103 syl ( 𝜑 → ( 1r𝑆 ) = ( 1r𝑈 ) )
105 9 101 104 3eqtr4a ( 𝜑 → ( 𝐹𝐵 ) = ( 1r𝑆 ) )
106 105 oveq1d ( 𝜑 → ( ( 𝐹𝐵 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ) = ( ( 1r𝑆 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ) )
107 5 38 102 45 89 ringlidmd ( 𝜑 → ( ( 1r𝑆 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ) = ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) )
108 98 106 107 3eqtrd ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝐵 } ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ) = ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) )
109 43 85 108 3eqtr3d ( 𝜑 → ( 𝑆 Σg ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) ( .r𝑆 ) ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝑏𝑣 ) ( 𝐴𝑣 ) ) ) ) ) ) ) = ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) )
110 39 109 eqtrd ( 𝜑 → ( ( 𝑄𝐹 ) ‘ 𝐴 ) = ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) )
111 37 110 jca ( 𝜑 → ( 𝐹𝑊 ∧ ( ( 𝑄𝐹 ) ‘ 𝐴 ) = ( 𝑀 Σg ( 𝑣𝐼 ↦ ( ( 𝐵𝑣 ) ( 𝐴𝑣 ) ) ) ) ) )