Step |
Hyp |
Ref |
Expression |
1 |
|
evlselv.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
evlselv.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
evlselv.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
evlselv.u |
⊢ 𝑈 = ( ( 𝐼 ∖ 𝐽 ) mPoly 𝑅 ) |
5 |
|
evlselv.t |
⊢ 𝑇 = ( 𝐽 mPoly 𝑈 ) |
6 |
|
evlselv.l |
⊢ 𝐿 = ( algSc ‘ 𝑈 ) |
7 |
|
evlselv.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
8 |
|
evlselv.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
9 |
|
evlselv.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
10 |
|
evlselv.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
11 |
|
evlselv.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) |
14 |
|
difssd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ⊆ 𝐼 ) |
15 |
7 14
|
ssexd |
⊢ ( 𝜑 → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
16 |
4 15 8
|
mplcrngd |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
17 |
16
|
crngringd |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑈 ∈ Ring ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
20 |
|
eqid |
⊢ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } = { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } |
21 |
1 3 4 5 19 8 9 10
|
selvcl |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ∈ ( Base ‘ 𝑇 ) ) |
22 |
5 12 19 20 21
|
mplelf |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) : { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) : { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
24 |
23
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ∈ ( Base ‘ 𝑈 ) ) |
25 |
|
eqid |
⊢ ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 ) |
26 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑈 ) ) = ( .g ‘ ( mulGrp ‘ 𝑈 ) ) |
27 |
7 9
|
ssexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝐽 ∈ V ) |
29 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑈 ∈ CRing ) |
30 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ∈ V ) |
31 |
2
|
fvexi |
⊢ 𝐾 ∈ V |
32 |
31
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
33 |
8
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
34 |
4 12 2 6 15 33
|
mplasclf |
⊢ ( 𝜑 → 𝐿 : 𝐾 ⟶ ( Base ‘ 𝑈 ) ) |
35 |
30 32 34
|
elmapdd |
⊢ ( 𝜑 → 𝐿 ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐾 ) ) |
36 |
11 9
|
elmapssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ 𝐽 ) ∈ ( 𝐾 ↑m 𝐽 ) ) |
37 |
35 36
|
mapcod |
⊢ ( 𝜑 → ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐽 ) ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐽 ) ) |
39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) |
40 |
20 12 25 26 28 29 38 39
|
evlsvvvallem |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ∈ ( Base ‘ 𝑈 ) ) |
41 |
12 13 18 24 40
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ∈ ( Base ‘ 𝑈 ) ) |
42 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) |
43 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) = ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ) |
44 |
|
fveq1 |
⊢ ( 𝑢 = ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) → ( 𝑢 ‘ 𝑐 ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ‘ 𝑐 ) ) |
45 |
41 42 43 44
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ‘ 𝑐 ) ) ) |
46 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝐿 : 𝐾 ⟶ ( Base ‘ 𝑈 ) ) |
47 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
48 |
47 2
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
49 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑅 ) ) = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
50 |
47
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
51 |
33 50
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
52 |
51
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
53 |
20
|
psrbagf |
⊢ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } → 𝑒 : 𝐽 ⟶ ℕ0 ) |
54 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑒 : 𝐽 ⟶ ℕ0 ) |
55 |
54
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( 𝑒 ‘ 𝑗 ) ∈ ℕ0 ) |
56 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
57 |
11 56
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐾 ) |
58 |
57 9
|
fssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ 𝐾 ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ 𝐾 ) |
60 |
59
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ∈ 𝐾 ) |
61 |
48 49 52 55 60
|
mulgnn0cld |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ∈ 𝐾 ) |
62 |
46 61
|
cofmpt |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝐿 ∘ ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( 𝐿 ‘ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
63 |
4
|
mplassa |
⊢ ( ( ( 𝐼 ∖ 𝐽 ) ∈ V ∧ 𝑅 ∈ CRing ) → 𝑈 ∈ AssAlg ) |
64 |
15 8 63
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ AssAlg ) |
65 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
66 |
6 65
|
asclrhm |
⊢ ( 𝑈 ∈ AssAlg → 𝐿 ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) |
67 |
64 66
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) ) |
68 |
4 15 8
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑈 ) ) |
69 |
68
|
eqcomd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑈 ) = 𝑅 ) |
70 |
69
|
oveq1d |
⊢ ( 𝜑 → ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) = ( 𝑅 RingHom 𝑈 ) ) |
71 |
67 70
|
eleqtrd |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝑅 RingHom 𝑈 ) ) |
72 |
47 25
|
rhmmhm |
⊢ ( 𝐿 ∈ ( 𝑅 RingHom 𝑈 ) → 𝐿 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
73 |
71 72
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
74 |
73
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → 𝐿 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
75 |
48 49 26
|
mhmmulg |
⊢ ( ( 𝐿 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑈 ) ) ∧ ( 𝑒 ‘ 𝑗 ) ∈ ℕ0 ∧ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ∈ 𝐾 ) → ( 𝐿 ‘ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( 𝐿 ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
76 |
74 55 60 75
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( 𝐿 ‘ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( 𝐿 ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
77 |
58
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ 𝐾 ) |
78 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → 𝑗 ∈ 𝐽 ) |
79 |
77 78
|
fvco3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) = ( 𝐿 ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
80 |
79
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) = ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( 𝐿 ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
81 |
76 80
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( 𝐿 ‘ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) |
82 |
81
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( 𝐿 ‘ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) |
83 |
62 82
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝐿 ∘ ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) |
84 |
83
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑈 ) Σg ( 𝐿 ∘ ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) = ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) |
85 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) |
86 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) = ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) |
87 |
68 8
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑈 ) ∈ CRing ) |
88 |
|
eqid |
⊢ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) = ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) |
89 |
88
|
crngmgp |
⊢ ( ( Scalar ‘ 𝑈 ) ∈ CRing → ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ∈ CMnd ) |
90 |
87 89
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ∈ CMnd ) |
91 |
90
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ∈ CMnd ) |
92 |
25
|
ringmgp |
⊢ ( 𝑈 ∈ Ring → ( mulGrp ‘ 𝑈 ) ∈ Mnd ) |
93 |
17 92
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑈 ) ∈ Mnd ) |
94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑈 ) ∈ Mnd ) |
95 |
88 25
|
rhmmhm |
⊢ ( 𝐿 ∈ ( ( Scalar ‘ 𝑈 ) RingHom 𝑈 ) → 𝐿 ∈ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
96 |
67 95
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
97 |
96
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝐿 ∈ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
98 |
68
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
99 |
2 98
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
100 |
99
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
101 |
61 100
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
102 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
103 |
88 102
|
mgpbas |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) |
104 |
101 103
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ∈ ( Base ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
105 |
104
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) : 𝐽 ⟶ ( Base ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
106 |
54
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑒 = ( 𝑗 ∈ 𝐽 ↦ ( 𝑒 ‘ 𝑗 ) ) ) |
107 |
20
|
psrbagfsupp |
⊢ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } → 𝑒 finSupp 0 ) |
108 |
107
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑒 finSupp 0 ) |
109 |
106 108
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( 𝑒 ‘ 𝑗 ) ) finSupp 0 ) |
110 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
111 |
48 110 49
|
mulg0 |
⊢ ( 𝑘 ∈ 𝐾 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
112 |
111
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ 𝐾 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
113 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ∈ V ) |
114 |
109 112 55 60 113
|
fsuppssov1 |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
115 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
116 |
47 115
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
117 |
114 116
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) finSupp ( 1r ‘ 𝑅 ) ) |
118 |
68
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑈 ) ) ) |
119 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑈 ) ) = ( 1r ‘ ( Scalar ‘ 𝑈 ) ) |
120 |
88 119
|
ringidval |
⊢ ( 1r ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) |
121 |
118 120
|
eqtrdi |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
122 |
121
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
123 |
117 122
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
124 |
85 86 91 94 28 97 105 123
|
gsummhm |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑈 ) Σg ( 𝐿 ∘ ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) = ( 𝐿 ‘ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
125 |
84 124
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) = ( 𝐿 ‘ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
126 |
125
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) = ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( 𝐿 ‘ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) |
127 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑈 ∈ AssAlg ) |
128 |
101
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) : 𝐽 ⟶ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
129 |
123 120
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) finSupp ( 1r ‘ ( Scalar ‘ 𝑈 ) ) ) |
130 |
103 120 91 28 128 129
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
131 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
132 |
6 65 102 12 13 131
|
asclmul2 |
⊢ ( ( 𝑈 ∈ AssAlg ∧ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∧ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ∈ ( Base ‘ 𝑈 ) ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( 𝐿 ‘ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) = ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( ·𝑠 ‘ 𝑈 ) ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) ) |
133 |
127 130 24 132
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( 𝐿 ‘ ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) = ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( ·𝑠 ‘ 𝑈 ) ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) ) |
134 |
126 133
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) = ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( ·𝑠 ‘ 𝑈 ) ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) ) |
135 |
134
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( ·𝑠 ‘ 𝑈 ) ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) ‘ 𝑐 ) ) |
136 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
137 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
138 |
99
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
139 |
130 138
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ 𝐾 ) |
140 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
141 |
4 131 2 12 136 137 139 24 140
|
mplvscaval |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( ·𝑠 ‘ 𝑈 ) ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) ‘ 𝑐 ) = ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) |
142 |
135 141
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ‘ 𝑐 ) = ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) |
143 |
142
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ‘ 𝑐 ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) ) |
144 |
45 143
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) ) |
145 |
144
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) ) ) |
146 |
69
|
fveq2d |
⊢ ( 𝜑 → ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) = ( mulGrp ‘ 𝑅 ) ) |
147 |
146
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) = ( mulGrp ‘ 𝑅 ) ) |
148 |
147
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
149 |
148
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) = ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) |
150 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CRing ) |
151 |
148 139
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ 𝐾 ) |
152 |
22
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ∈ ( Base ‘ 𝑈 ) ) |
153 |
4 2 12 137 152
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) : { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
154 |
153
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ∈ 𝐾 ) |
155 |
154
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ∈ 𝐾 ) |
156 |
2 136 150 151 155
|
crngcomd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
157 |
149 156
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
158 |
157
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) |
159 |
158
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( mulGrp ‘ ( Scalar ‘ 𝑈 ) ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) ) |
160 |
145 159
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) ) |
161 |
160
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
162 |
|
eqid |
⊢ ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) = ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) |
163 |
|
fveq1 |
⊢ ( 𝑢 = ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) → ( 𝑢 ‘ 𝑐 ) = ( ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ‘ 𝑐 ) ) |
164 |
|
eqid |
⊢ ( 𝐽 eval 𝑈 ) = ( 𝐽 eval 𝑈 ) |
165 |
164 5 19 20 12 25 26 13 27 16 21 37
|
evlvvval |
⊢ ( 𝜑 → ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) = ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) |
166 |
164 5 19 12 27 16 21 37
|
evlcl |
⊢ ( 𝜑 → ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ∈ ( Base ‘ 𝑈 ) ) |
167 |
165 166
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ∈ ( Base ‘ 𝑈 ) ) |
168 |
167
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ∈ ( Base ‘ 𝑈 ) ) |
169 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ‘ 𝑐 ) ∈ V ) |
170 |
162 163 168 169
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ‘ ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) = ( ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ‘ 𝑐 ) ) |
171 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
172 |
17
|
ringcmnd |
⊢ ( 𝜑 → 𝑈 ∈ CMnd ) |
173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑈 ∈ CMnd ) |
174 |
8
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
175 |
174
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
176 |
175
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Mnd ) |
177 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐽 ) ∈ V |
178 |
177
|
rabex |
⊢ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∈ V |
179 |
178
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∈ V ) |
180 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
181 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Grp ) |
182 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
183 |
4 12 137 162 180 181 182
|
mplmapghm |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∈ ( 𝑈 GrpHom 𝑅 ) ) |
184 |
|
ghmmhm |
⊢ ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∈ ( 𝑈 GrpHom 𝑅 ) → ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∈ ( 𝑈 MndHom 𝑅 ) ) |
185 |
183 184
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∈ ( 𝑈 MndHom 𝑅 ) ) |
186 |
41
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) : { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
187 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝐽 ∈ V ) |
188 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑈 ∈ CRing ) |
189 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ∈ ( Base ‘ 𝑇 ) ) |
190 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ ( ( Base ‘ 𝑈 ) ↑m 𝐽 ) ) |
191 |
20 5 19 12 25 26 13 187 188 189 190
|
evlvvvallem |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑈 ) ) |
192 |
12 171 173 176 179 185 186 191
|
gsummhm |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) = ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ‘ ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) ) |
193 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) = ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) |
194 |
193
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) = ( ( 𝑈 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ‘ 𝑐 ) ) |
195 |
170 192 194
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) = ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) ) |
196 |
195
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( 𝑅 Σg ( ( 𝑢 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑢 ‘ 𝑐 ) ) ∘ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ( .r ‘ 𝑈 ) ( ( mulGrp ‘ 𝑈 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑈 ) ) ( ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑗 ) ) ) ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
197 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
198 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
199 |
47
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
200 |
8 199
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
201 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
202 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
203 |
137
|
psrbagf |
⊢ ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑐 : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
204 |
203
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑐 : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
205 |
204
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ ℕ0 ) |
206 |
57 14
|
fssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) : ( 𝐼 ∖ 𝐽 ) ⟶ 𝐾 ) |
207 |
206
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) : ( 𝐼 ∖ 𝐽 ) ⟶ 𝐾 ) |
208 |
207
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ 𝐾 ) |
209 |
48 49 202 205 208
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ∈ 𝐾 ) |
210 |
209
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) : ( 𝐼 ∖ 𝐽 ) ⟶ 𝐾 ) |
211 |
204
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑐 = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( 𝑐 ‘ 𝑘 ) ) ) |
212 |
137
|
psrbagfsupp |
⊢ ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑐 finSupp 0 ) |
213 |
212
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑐 finSupp 0 ) |
214 |
211 213
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( 𝑐 ‘ 𝑘 ) ) finSupp 0 ) |
215 |
48 110 49
|
mulg0 |
⊢ ( 𝑣 ∈ 𝐾 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑣 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
216 |
215
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ 𝐾 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑣 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
217 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( 𝑐 ‘ 𝑘 ) ∈ V ) |
218 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ∈ V ) |
219 |
214 216 217 208 218
|
fsuppssov1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
220 |
48 110 201 180 210 219
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ∈ 𝐾 ) |
221 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
222 |
2 136 221 155 151
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ∈ 𝐾 ) |
223 |
178
|
mptex |
⊢ ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ∈ V |
224 |
223
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ∈ V ) |
225 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 0g ‘ 𝑅 ) ∈ V ) |
226 |
|
funmpt |
⊢ Fun ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) |
227 |
226
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → Fun ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) ) |
228 |
5 19 171 21 16
|
mplelsfi |
⊢ ( 𝜑 → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) finSupp ( 0g ‘ 𝑈 ) ) |
229 |
228
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) finSupp ( 0g ‘ 𝑈 ) ) |
230 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ⊆ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) |
231 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 0g ‘ 𝑈 ) ∈ V ) |
232 |
23 230 179 231
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ ( { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∖ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) = ( 0g ‘ 𝑈 ) ) |
233 |
232
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ ( { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∖ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) = ( ( 0g ‘ 𝑈 ) ‘ 𝑐 ) ) |
234 |
4 137 197 171 15 174
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) = ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) |
235 |
234
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 0g ‘ 𝑈 ) = ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) |
236 |
235
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 0g ‘ 𝑈 ) ‘ 𝑐 ) = ( ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑐 ) ) |
237 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
238 |
237
|
fvconst2 |
⊢ ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → ( ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
239 |
238
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
240 |
236 239
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 0g ‘ 𝑈 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
241 |
240
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ ( { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∖ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 0g ‘ 𝑈 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
242 |
233 241
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ ( { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∖ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) = ( 0g ‘ 𝑅 ) ) |
243 |
242 179
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) supp ( 0g ‘ 𝑈 ) ) ) |
244 |
224 225 227 229 243
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) finSupp ( 0g ‘ 𝑅 ) ) |
245 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ 𝐾 ) → 𝑅 ∈ Ring ) |
246 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ 𝐾 ) → 𝑣 ∈ 𝐾 ) |
247 |
2 136 197 245 246
|
ringlzd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑣 ∈ 𝐾 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑣 ) = ( 0g ‘ 𝑅 ) ) |
248 |
244 247 155 151 225
|
fsuppssov1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
249 |
2 197 136 198 179 220 222 248
|
gsummulc1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
250 |
161 196 249
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
251 |
|
fveq2 |
⊢ ( 𝑎 = 𝑒 → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) = ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) |
252 |
251
|
adantl |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) = ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ) |
253 |
|
simpl |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → 𝑏 = 𝑐 ) |
254 |
252 253
|
fveq12d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ) |
255 |
|
fveq1 |
⊢ ( 𝑎 = 𝑒 → ( 𝑎 ‘ 𝑗 ) = ( 𝑒 ‘ 𝑗 ) ) |
256 |
255
|
adantl |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( 𝑎 ‘ 𝑗 ) = ( 𝑒 ‘ 𝑗 ) ) |
257 |
256
|
oveq1d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
258 |
257
|
mpteq2dv |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
259 |
258
|
oveq2d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
260 |
254 259
|
oveq12d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
261 |
|
fveq1 |
⊢ ( 𝑏 = 𝑐 → ( 𝑏 ‘ 𝑘 ) = ( 𝑐 ‘ 𝑘 ) ) |
262 |
261
|
adantr |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( 𝑏 ‘ 𝑘 ) = ( 𝑐 ‘ 𝑘 ) ) |
263 |
262
|
oveq1d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
264 |
263
|
mpteq2dv |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
265 |
264
|
oveq2d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) |
266 |
260 265
|
oveq12d |
⊢ ( ( 𝑏 = 𝑐 ∧ 𝑎 = 𝑒 ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
267 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) = ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
268 |
|
ovex |
⊢ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ∈ V |
269 |
266 267 268
|
ovmpoa |
⊢ ( ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
270 |
269
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
271 |
270
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) = ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
272 |
271
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑒 ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑒 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
273 |
250 272
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) ) |
274 |
273
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) = ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) ) ) |
275 |
274
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) ) ) ) |
276 |
33
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
277 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
278 |
277
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
279 |
278
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
280 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
281 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) : { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
282 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
283 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑉 ) |
284 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐽 ⊆ 𝐼 ) |
285 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
286 |
282 20 283 284 285
|
psrbagres |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ 𝐽 ) ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) |
287 |
281 286
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ∈ ( Base ‘ 𝑈 ) ) |
288 |
4 2 12 137 287
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) : { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
289 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐼 ∖ 𝐽 ) ⊆ 𝐼 ) |
290 |
282 137 283 289 285
|
psrbagres |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
291 |
288 290
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ∈ 𝐾 ) |
292 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
293 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐽 ∈ V ) |
294 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
295 |
282
|
psrbagf |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑑 : 𝐼 ⟶ ℕ0 ) |
296 |
295
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
297 |
296 284
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
298 |
297
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ∈ ℕ0 ) |
299 |
58
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ∈ 𝐾 ) |
300 |
299
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ∈ 𝐾 ) |
301 |
48 49 294 298 300
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ∈ 𝐾 ) |
302 |
301
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) : 𝐽 ⟶ 𝐾 ) |
303 |
27
|
mptexd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ∈ V ) |
304 |
303
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ∈ V ) |
305 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ∈ V ) |
306 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
307 |
306
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → Fun ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
308 |
282
|
psrbagfsupp |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑑 finSupp 0 ) |
309 |
308
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 finSupp 0 ) |
310 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 0 ∈ ℤ ) |
311 |
309 310
|
fsuppres |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ 𝐽 ) finSupp 0 ) |
312 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ⊆ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) |
313 |
297 312 293 310
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) ) → ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) = 0 ) |
314 |
313
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) ) → ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
315 |
|
eldifi |
⊢ ( 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) → 𝑗 ∈ 𝐽 ) |
316 |
48 110 49
|
mulg0 |
⊢ ( ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ∈ 𝐾 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
317 |
300 316
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
318 |
315 317
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
319 |
314 318
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ ( 𝐽 ∖ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) ) → ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
320 |
319 293
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) supp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ⊆ ( ( 𝑑 ↾ 𝐽 ) supp 0 ) ) |
321 |
304 305 307 311 320
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
322 |
48 110 292 293 302 321
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ 𝐾 ) |
323 |
2 136 280 291 322
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ∈ 𝐾 ) |
324 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
325 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
326 |
296 289
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
327 |
326
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ ℕ0 ) |
328 |
206
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ 𝐾 ) |
329 |
328
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ 𝐾 ) |
330 |
48 49 325 327 329
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ∈ 𝐾 ) |
331 |
330
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) : ( 𝐼 ∖ 𝐽 ) ⟶ 𝐾 ) |
332 |
324
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ∈ V ) |
333 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
334 |
333
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → Fun ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
335 |
309 310
|
fsuppres |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) finSupp 0 ) |
336 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ⊆ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) |
337 |
326 336 324 310
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) ) → ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) = 0 ) |
338 |
337
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) ) → ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
339 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) → 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) |
340 |
339 329
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) ) → ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ 𝐾 ) |
341 |
48 110 49
|
mulg0 |
⊢ ( ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ∈ 𝐾 → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
342 |
340 341
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
343 |
338 342
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( ( 𝐼 ∖ 𝐽 ) ∖ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) ) → ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
344 |
343 324
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) supp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ⊆ ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) supp 0 ) ) |
345 |
332 305 334 335 344
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
346 |
48 110 292 324 331 345
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ∈ 𝐾 ) |
347 |
2 136 280 323 346
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ∈ 𝐾 ) |
348 |
347
|
fmpttd |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
349 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CRing ) |
350 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐹 ∈ 𝐵 ) |
351 |
282 1 3 349 284 350 285
|
selvvvval |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( 𝐹 ‘ 𝑑 ) ) |
352 |
351
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑑 ) ) ) |
353 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
354 |
1 353 3 282 10
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
355 |
354
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑑 ) ) ) |
356 |
1 3 197 10 8
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
357 |
355 356
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝐹 ‘ 𝑑 ) ) finSupp ( 0g ‘ 𝑅 ) ) |
358 |
352 357
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
359 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐾 ) → 𝑅 ∈ Ring ) |
360 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐾 ) → 𝑣 ∈ 𝐾 ) |
361 |
2 136 197 359 360
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐾 ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑣 ) = ( 0g ‘ 𝑅 ) ) |
362 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ∈ V ) |
363 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
364 |
358 361 362 322 363
|
fsuppssov1 |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
365 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ∈ V ) |
366 |
364 361 365 346 363
|
fsuppssov1 |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
367 |
|
eqid |
⊢ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) = ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) |
368 |
282 20 137 367 7 9
|
evlselvlem |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) –1-1-onto→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
369 |
2 197 276 279 348 366 368
|
gsumf1o |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∘ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) ) ) ) |
370 |
137
|
psrbagf |
⊢ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑏 : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
371 |
370
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑏 : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
372 |
20
|
psrbagf |
⊢ ( 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } → 𝑎 : 𝐽 ⟶ ℕ0 ) |
373 |
372
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑎 : 𝐽 ⟶ ℕ0 ) |
374 |
|
disjdifr |
⊢ ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ |
375 |
374
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) |
376 |
371 373 375
|
fun2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑏 ∪ 𝑎 ) : ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) ⟶ ℕ0 ) |
377 |
|
undifr |
⊢ ( 𝐽 ⊆ 𝐼 ↔ ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) = 𝐼 ) |
378 |
9 377
|
sylib |
⊢ ( 𝜑 → ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) = 𝐼 ) |
379 |
378
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) = 𝐼 ) |
380 |
379
|
feq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) : ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) ⟶ ℕ0 ↔ ( 𝑏 ∪ 𝑎 ) : 𝐼 ⟶ ℕ0 ) ) |
381 |
376 380
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑏 ∪ 𝑎 ) : 𝐼 ⟶ ℕ0 ) |
382 |
|
vex |
⊢ 𝑏 ∈ V |
383 |
|
vex |
⊢ 𝑎 ∈ V |
384 |
382 383
|
unex |
⊢ ( 𝑏 ∪ 𝑎 ) ∈ V |
385 |
384
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑏 ∪ 𝑎 ) ∈ V ) |
386 |
|
0zd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 0 ∈ ℤ ) |
387 |
381
|
ffund |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → Fun ( 𝑏 ∪ 𝑎 ) ) |
388 |
137
|
psrbagfsupp |
⊢ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑏 finSupp 0 ) |
389 |
388
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑏 finSupp 0 ) |
390 |
20
|
psrbagfsupp |
⊢ ( 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } → 𝑎 finSupp 0 ) |
391 |
390
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑎 finSupp 0 ) |
392 |
389 391
|
fsuppun |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) supp 0 ) ∈ Fin ) |
393 |
385 386 387 392
|
isfsuppd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑏 ∪ 𝑎 ) finSupp 0 ) |
394 |
|
fcdmnn0fsuppg |
⊢ ( ( ( 𝑏 ∪ 𝑎 ) ∈ V ∧ ( 𝑏 ∪ 𝑎 ) : 𝐼 ⟶ ℕ0 ) → ( ( 𝑏 ∪ 𝑎 ) finSupp 0 ↔ ( ◡ ( 𝑏 ∪ 𝑎 ) “ ℕ ) ∈ Fin ) ) |
395 |
385 381 394
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) finSupp 0 ↔ ( ◡ ( 𝑏 ∪ 𝑎 ) “ ℕ ) ∈ Fin ) ) |
396 |
393 395
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ◡ ( 𝑏 ∪ 𝑎 ) “ ℕ ) ∈ Fin ) |
397 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝐼 ∈ 𝑉 ) |
398 |
282
|
psrbag |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑏 ∪ 𝑎 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ ( ( 𝑏 ∪ 𝑎 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑏 ∪ 𝑎 ) “ ℕ ) ∈ Fin ) ) ) |
399 |
397 398
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ ( ( 𝑏 ∪ 𝑎 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑏 ∪ 𝑎 ) “ ℕ ) ∈ Fin ) ) ) |
400 |
381 396 399
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑏 ∪ 𝑎 ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
401 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) = ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) ) |
402 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
403 |
|
reseq1 |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( 𝑑 ↾ 𝐽 ) = ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) |
404 |
403
|
fveq2d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) = ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ) |
405 |
|
reseq1 |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) |
406 |
404 405
|
fveq12d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) |
407 |
403
|
fveq1d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) = ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ) |
408 |
407
|
oveq1d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
409 |
408
|
mpteq2dv |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
410 |
409
|
oveq2d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
411 |
406 410
|
oveq12d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
412 |
405
|
fveq1d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) = ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) |
413 |
412
|
oveq1d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
414 |
413
|
mpteq2dv |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
415 |
414
|
oveq2d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) |
416 |
411 415
|
oveq12d |
⊢ ( 𝑑 = ( 𝑏 ∪ 𝑎 ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
417 |
384 416
|
csbie |
⊢ ⦋ ( 𝑏 ∪ 𝑎 ) / 𝑑 ⦌ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) |
418 |
370
|
ffnd |
⊢ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑏 Fn ( 𝐼 ∖ 𝐽 ) ) |
419 |
418
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑏 Fn ( 𝐼 ∖ 𝐽 ) ) |
420 |
373
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑎 Fn 𝐽 ) |
421 |
|
fnunres2 |
⊢ ( ( 𝑏 Fn ( 𝐼 ∖ 𝐽 ) ∧ 𝑎 Fn 𝐽 ∧ ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) → ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) = 𝑎 ) |
422 |
419 420 375 421
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) = 𝑎 ) |
423 |
422
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) = ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ) |
424 |
|
fnunres1 |
⊢ ( ( 𝑏 Fn ( 𝐼 ∖ 𝐽 ) ∧ 𝑎 Fn 𝐽 ∧ ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) → ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) = 𝑏 ) |
425 |
419 420 375 424
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) = 𝑏 ) |
426 |
423 425
|
fveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ) |
427 |
422
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) = ( 𝑎 ‘ 𝑗 ) ) |
428 |
427
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
429 |
428
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
430 |
429
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
431 |
426 430
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ) |
432 |
425
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) = ( 𝑏 ‘ 𝑘 ) ) |
433 |
432
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
434 |
433
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
435 |
434
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) |
436 |
431 435
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ) ‘ ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( ( 𝑏 ∪ 𝑎 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
437 |
417 436
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ⦋ ( 𝑏 ∪ 𝑎 ) / 𝑑 ⦌ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
438 |
400 401 402 437
|
fmpocos |
⊢ ( 𝜑 → ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∘ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) ) = ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
439 |
438
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∘ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) ) ) = ( 𝑅 Σg ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
440 |
|
ovex |
⊢ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∈ V |
441 |
440
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
442 |
441
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
443 |
178
|
a1i |
⊢ ( 𝜑 → { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ∈ V ) |
444 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑅 ∈ Ring ) |
445 |
22
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑈 ) ) |
446 |
4 2 12 137 445
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) : { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
447 |
446
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ∧ 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ∈ 𝐾 ) |
448 |
447
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ∈ 𝐾 ) |
449 |
448
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ∈ 𝐾 ) |
450 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝐽 ∈ V ) |
451 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑅 ∈ CRing ) |
452 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝐴 ↾ 𝐽 ) ∈ ( 𝐾 ↑m 𝐽 ) ) |
453 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) |
454 |
20 2 47 49 450 451 452 453
|
evlsvvvallem |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ∈ 𝐾 ) |
455 |
2 136 444 449 454
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ∈ 𝐾 ) |
456 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝐼 ∖ 𝐽 ) ∈ V ) |
457 |
11 14
|
elmapssresd |
⊢ ( 𝜑 → ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ∈ ( 𝐾 ↑m ( 𝐼 ∖ 𝐽 ) ) ) |
458 |
457
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ∈ ( 𝐾 ↑m ( 𝐼 ∖ 𝐽 ) ) ) |
459 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
460 |
137 2 47 49 456 451 458 459
|
evlsvvvallem |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ∈ 𝐾 ) |
461 |
2 136 444 455 460
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ∈ 𝐾 ) |
462 |
461
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∀ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ∈ 𝐾 ) |
463 |
267
|
fmpo |
⊢ ( ∀ 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∀ 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ∈ 𝐾 ↔ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ⟶ 𝐾 ) |
464 |
462 463
|
sylib |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) ⟶ 𝐾 ) |
465 |
|
f1of1 |
⊢ ( ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) –1-1-onto→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) –1-1→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
466 |
368 465
|
syl |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) : ( { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } × { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ) –1-1→ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
467 |
278
|
mptex |
⊢ ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∈ V |
468 |
467
|
a1i |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∈ V ) |
469 |
366 466 363 468
|
fsuppco |
⊢ ( 𝜑 → ( ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ∘ ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑏 ∪ 𝑎 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
470 |
438 469
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
471 |
2 197 276 442 443 464 470
|
gsumxp |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) ) ) ) |
472 |
369 439 471
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑒 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( 𝑐 ( 𝑏 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } , 𝑎 ∈ { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ 𝑎 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑎 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑏 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) 𝑒 ) ) ) ) ) ) |
473 |
2 136 280 291 322 346
|
ringassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
474 |
47 136
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
475 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
476 |
296
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑑 ‘ 𝑖 ) ∈ ℕ0 ) |
477 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
478 |
477
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝐾 ) |
479 |
48 49 475 476 478
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ∈ 𝐾 ) |
480 |
479
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) : 𝐼 ⟶ 𝐾 ) |
481 |
296
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑑 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑑 ‘ 𝑖 ) ) ) |
482 |
481 309
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ 𝐼 ↦ ( 𝑑 ‘ 𝑖 ) ) finSupp 0 ) |
483 |
111
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ 𝐾 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑘 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
484 |
482 483 476 478 305
|
fsuppssov1 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) finSupp ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
485 |
|
disjdif |
⊢ ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ |
486 |
485
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐽 ∩ ( 𝐼 ∖ 𝐽 ) ) = ∅ ) |
487 |
|
undif |
⊢ ( 𝐽 ⊆ 𝐼 ↔ ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) = 𝐼 ) |
488 |
9 487
|
sylib |
⊢ ( 𝜑 → ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) = 𝐼 ) |
489 |
488
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) ) |
490 |
489
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 = ( 𝐽 ∪ ( 𝐼 ∖ 𝐽 ) ) ) |
491 |
48 110 474 292 283 480 484 486 490
|
gsumsplit |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) = ( ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ 𝐽 ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) ) |
492 |
284
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ 𝐽 ) = ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) |
493 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑗 ) ) |
494 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑗 ) ) |
495 |
493 494
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝑑 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑗 ) ) ) |
496 |
495
|
cbvmptv |
⊢ ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑑 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑗 ) ) ) |
497 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → 𝑗 ∈ 𝐽 ) |
498 |
497
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) = ( 𝑑 ‘ 𝑗 ) ) |
499 |
497
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) = ( 𝐴 ‘ 𝑗 ) ) |
500 |
498 499
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) = ( ( 𝑑 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑗 ) ) ) |
501 |
500
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑗 ∈ 𝐽 ) → ( ( 𝑑 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑗 ) ) = ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) |
502 |
501
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑗 ∈ 𝐽 ↦ ( ( 𝑑 ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
503 |
496 502
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ 𝐽 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) = ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
504 |
492 503
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ 𝐽 ) = ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) |
505 |
504
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ 𝐽 ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) |
506 |
289
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ ( 𝐼 ∖ 𝐽 ) ) = ( 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) |
507 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑘 ) ) |
508 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑘 ) ) |
509 |
507 508
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) = ( ( 𝑑 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑘 ) ) ) |
510 |
509
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑑 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑘 ) ) ) |
511 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) |
512 |
511
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) = ( 𝑑 ‘ 𝑘 ) ) |
513 |
511
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
514 |
512 513
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) = ( ( 𝑑 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑘 ) ) ) |
515 |
514
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ∧ 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ) → ( ( 𝑑 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑘 ) ) = ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) |
516 |
515
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑑 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
517 |
510 516
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑖 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
518 |
506 517
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ ( 𝐼 ∖ 𝐽 ) ) = ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) |
519 |
518
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) |
520 |
505 519
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ 𝐽 ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) = ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) |
521 |
491 520
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
522 |
351 521
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) = ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
523 |
473 522
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) = ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
524 |
523
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) = ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
525 |
524
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ‘ ( 𝑑 ↾ 𝐽 ) ) ‘ ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑑 ↾ 𝐽 ) ‘ 𝑗 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑗 ) ) ) ) ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
526 |
275 472 525
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
527 |
|
eqid |
⊢ ( ( 𝐼 ∖ 𝐽 ) eval 𝑅 ) = ( ( 𝐼 ∖ 𝐽 ) eval 𝑅 ) |
528 |
527 4 12 137 2 47 49 136 15 8 166 457
|
evlvvval |
⊢ ( 𝜑 → ( ( ( ( 𝐼 ∖ 𝐽 ) eval 𝑅 ) ‘ ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ‘ ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ‘ 𝑐 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑘 ∈ ( 𝐼 ∖ 𝐽 ) ↦ ( ( 𝑐 ‘ 𝑘 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ‘ 𝑘 ) ) ) ) ) ) ) ) |
529 |
|
eqid |
⊢ ( 𝐼 eval 𝑅 ) = ( 𝐼 eval 𝑅 ) |
530 |
529 1 3 282 2 47 49 136 7 8 10 11
|
evlvvval |
⊢ ( 𝜑 → ( ( ( 𝐼 eval 𝑅 ) ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑅 Σg ( 𝑑 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
531 |
526 528 530
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 𝐼 ∖ 𝐽 ) eval 𝑅 ) ‘ ( ( ( 𝐽 eval 𝑈 ) ‘ ( ( ( 𝐼 selectVars 𝑅 ) ‘ 𝐽 ) ‘ 𝐹 ) ) ‘ ( 𝐿 ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ‘ ( 𝐴 ↾ ( 𝐼 ∖ 𝐽 ) ) ) = ( ( ( 𝐼 eval 𝑅 ) ‘ 𝐹 ) ‘ 𝐴 ) ) |