Step |
Hyp |
Ref |
Expression |
1 |
|
evlselvlem.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
2 |
|
evlselvlem.e |
⊢ 𝐸 = { 𝑔 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑔 “ ℕ ) ∈ Fin } |
3 |
|
evlselvlem.c |
⊢ 𝐶 = { 𝑓 ∈ ( ℕ0 ↑m ( 𝐼 ∖ 𝐽 ) ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
4 |
|
evlselvlem.h |
⊢ 𝐻 = ( 𝑐 ∈ 𝐶 , 𝑒 ∈ 𝐸 ↦ ( 𝑐 ∪ 𝑒 ) ) |
5 |
|
evlselvlem.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
evlselvlem.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
7 |
3
|
psrbagf |
⊢ ( 𝑐 ∈ 𝐶 → 𝑐 : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
8 |
7
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → 𝑐 : ( 𝐼 ∖ 𝐽 ) ⟶ ℕ0 ) |
9 |
2
|
psrbagf |
⊢ ( 𝑒 ∈ 𝐸 → 𝑒 : 𝐽 ⟶ ℕ0 ) |
10 |
9
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → 𝑒 : 𝐽 ⟶ ℕ0 ) |
11 |
|
disjdifr |
⊢ ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) |
13 |
8 10 12
|
fun2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( 𝑐 ∪ 𝑒 ) : ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) ⟶ ℕ0 ) |
14 |
|
undifr |
⊢ ( 𝐽 ⊆ 𝐼 ↔ ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) = 𝐼 ) |
15 |
6 14
|
sylib |
⊢ ( 𝜑 → ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) = 𝐼 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) = 𝐼 ) |
17 |
16
|
feq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( ( 𝑐 ∪ 𝑒 ) : ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) ⟶ ℕ0 ↔ ( 𝑐 ∪ 𝑒 ) : 𝐼 ⟶ ℕ0 ) ) |
18 |
13 17
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( 𝑐 ∪ 𝑒 ) : 𝐼 ⟶ ℕ0 ) |
19 |
|
unexg |
⊢ ( ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) → ( 𝑐 ∪ 𝑒 ) ∈ V ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( 𝑐 ∪ 𝑒 ) ∈ V ) |
21 |
|
0zd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → 0 ∈ ℤ ) |
22 |
13
|
ffund |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → Fun ( 𝑐 ∪ 𝑒 ) ) |
23 |
3
|
psrbagfsupp |
⊢ ( 𝑐 ∈ 𝐶 → 𝑐 finSupp 0 ) |
24 |
23
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → 𝑐 finSupp 0 ) |
25 |
2
|
psrbagfsupp |
⊢ ( 𝑒 ∈ 𝐸 → 𝑒 finSupp 0 ) |
26 |
25
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → 𝑒 finSupp 0 ) |
27 |
24 26
|
fsuppun |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( ( 𝑐 ∪ 𝑒 ) supp 0 ) ∈ Fin ) |
28 |
20 21 22 27
|
isfsuppd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( 𝑐 ∪ 𝑒 ) finSupp 0 ) |
29 |
|
fcdmnn0fsuppg |
⊢ ( ( ( 𝑐 ∪ 𝑒 ) ∈ V ∧ ( 𝑐 ∪ 𝑒 ) : ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) ⟶ ℕ0 ) → ( ( 𝑐 ∪ 𝑒 ) finSupp 0 ↔ ( ◡ ( 𝑐 ∪ 𝑒 ) “ ℕ ) ∈ Fin ) ) |
30 |
20 13 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( ( 𝑐 ∪ 𝑒 ) finSupp 0 ↔ ( ◡ ( 𝑐 ∪ 𝑒 ) “ ℕ ) ∈ Fin ) ) |
31 |
28 30
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( ◡ ( 𝑐 ∪ 𝑒 ) “ ℕ ) ∈ Fin ) |
32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → 𝐼 ∈ 𝑉 ) |
33 |
1
|
psrbag |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑐 ∪ 𝑒 ) ∈ 𝐷 ↔ ( ( 𝑐 ∪ 𝑒 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑐 ∪ 𝑒 ) “ ℕ ) ∈ Fin ) ) ) |
34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( ( 𝑐 ∪ 𝑒 ) ∈ 𝐷 ↔ ( ( 𝑐 ∪ 𝑒 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑐 ∪ 𝑒 ) “ ℕ ) ∈ Fin ) ) ) |
35 |
18 31 34
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( 𝑐 ∪ 𝑒 ) ∈ 𝐷 ) |
36 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
37 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( 𝐼 ∖ 𝐽 ) ⊆ 𝐼 ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑑 ∈ 𝐷 ) |
39 |
1 3 36 37 38
|
psrbagres |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∈ 𝐶 ) |
40 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝐽 ⊆ 𝐼 ) |
41 |
1 2 36 40 38
|
psrbagres |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( 𝑑 ↾ 𝐽 ) ∈ 𝐸 ) |
42 |
1
|
psrbagf |
⊢ ( 𝑑 ∈ 𝐷 → 𝑑 : 𝐼 ⟶ ℕ0 ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑑 : 𝐼 ⟶ ℕ0 ) |
44 |
43
|
freld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → Rel 𝑑 ) |
45 |
43
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → dom 𝑑 = 𝐼 ) |
46 |
40 14
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) = 𝐼 ) |
47 |
45 46
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → dom 𝑑 = ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) ) |
48 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) |
49 |
|
reldisjun |
⊢ ( ( Rel 𝑑 ∧ dom 𝑑 = ( ( 𝐼 ∖ 𝐽 ) ∪ 𝐽 ) ∧ ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) → 𝑑 = ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∪ ( 𝑑 ↾ 𝐽 ) ) ) |
50 |
44 47 48 49
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐷 ) → 𝑑 = ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∪ ( 𝑑 ↾ 𝐽 ) ) ) |
51 |
50
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑑 ∈ 𝐷 ) ) → 𝑑 = ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∪ ( 𝑑 ↾ 𝐽 ) ) ) |
52 |
|
uneq12 |
⊢ ( ( 𝑐 = ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∧ 𝑒 = ( 𝑑 ↾ 𝐽 ) ) → ( 𝑐 ∪ 𝑒 ) = ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∪ ( 𝑑 ↾ 𝐽 ) ) ) |
53 |
52
|
eqeq2d |
⊢ ( ( 𝑐 = ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∧ 𝑒 = ( 𝑑 ↾ 𝐽 ) ) → ( 𝑑 = ( 𝑐 ∪ 𝑒 ) ↔ 𝑑 = ( ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∪ ( 𝑑 ↾ 𝐽 ) ) ) ) |
54 |
51 53
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑑 ∈ 𝐷 ) ) → ( ( 𝑐 = ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∧ 𝑒 = ( 𝑑 ↾ 𝐽 ) ) → 𝑑 = ( 𝑐 ∪ 𝑒 ) ) ) |
55 |
8
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → 𝑐 Fn ( 𝐼 ∖ 𝐽 ) ) |
56 |
10
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → 𝑒 Fn 𝐽 ) |
57 |
|
fnunres1 |
⊢ ( ( 𝑐 Fn ( 𝐼 ∖ 𝐽 ) ∧ 𝑒 Fn 𝐽 ∧ ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) → ( ( 𝑐 ∪ 𝑒 ) ↾ ( 𝐼 ∖ 𝐽 ) ) = 𝑐 ) |
58 |
55 56 12 57
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( ( 𝑐 ∪ 𝑒 ) ↾ ( 𝐼 ∖ 𝐽 ) ) = 𝑐 ) |
59 |
58
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → 𝑐 = ( ( 𝑐 ∪ 𝑒 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) |
60 |
|
fnunres2 |
⊢ ( ( 𝑐 Fn ( 𝐼 ∖ 𝐽 ) ∧ 𝑒 Fn 𝐽 ∧ ( ( 𝐼 ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ) → ( ( 𝑐 ∪ 𝑒 ) ↾ 𝐽 ) = 𝑒 ) |
61 |
55 56 12 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( ( 𝑐 ∪ 𝑒 ) ↾ 𝐽 ) = 𝑒 ) |
62 |
61
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → 𝑒 = ( ( 𝑐 ∪ 𝑒 ) ↾ 𝐽 ) ) |
63 |
59 62
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ) → ( 𝑐 = ( ( 𝑐 ∪ 𝑒 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ∧ 𝑒 = ( ( 𝑐 ∪ 𝑒 ) ↾ 𝐽 ) ) ) |
64 |
63
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑑 ∈ 𝐷 ) ) → ( 𝑐 = ( ( 𝑐 ∪ 𝑒 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ∧ 𝑒 = ( ( 𝑐 ∪ 𝑒 ) ↾ 𝐽 ) ) ) |
65 |
|
reseq1 |
⊢ ( 𝑑 = ( 𝑐 ∪ 𝑒 ) → ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) = ( ( 𝑐 ∪ 𝑒 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) |
66 |
65
|
eqeq2d |
⊢ ( 𝑑 = ( 𝑐 ∪ 𝑒 ) → ( 𝑐 = ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ↔ 𝑐 = ( ( 𝑐 ∪ 𝑒 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ) ) |
67 |
|
reseq1 |
⊢ ( 𝑑 = ( 𝑐 ∪ 𝑒 ) → ( 𝑑 ↾ 𝐽 ) = ( ( 𝑐 ∪ 𝑒 ) ↾ 𝐽 ) ) |
68 |
67
|
eqeq2d |
⊢ ( 𝑑 = ( 𝑐 ∪ 𝑒 ) → ( 𝑒 = ( 𝑑 ↾ 𝐽 ) ↔ 𝑒 = ( ( 𝑐 ∪ 𝑒 ) ↾ 𝐽 ) ) ) |
69 |
66 68
|
anbi12d |
⊢ ( 𝑑 = ( 𝑐 ∪ 𝑒 ) → ( ( 𝑐 = ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∧ 𝑒 = ( 𝑑 ↾ 𝐽 ) ) ↔ ( 𝑐 = ( ( 𝑐 ∪ 𝑒 ) ↾ ( 𝐼 ∖ 𝐽 ) ) ∧ 𝑒 = ( ( 𝑐 ∪ 𝑒 ) ↾ 𝐽 ) ) ) ) |
70 |
64 69
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑑 ∈ 𝐷 ) ) → ( 𝑑 = ( 𝑐 ∪ 𝑒 ) → ( 𝑐 = ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∧ 𝑒 = ( 𝑑 ↾ 𝐽 ) ) ) ) |
71 |
54 70
|
impbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑑 ∈ 𝐷 ) ) → ( ( 𝑐 = ( 𝑑 ↾ ( 𝐼 ∖ 𝐽 ) ) ∧ 𝑒 = ( 𝑑 ↾ 𝐽 ) ) ↔ 𝑑 = ( 𝑐 ∪ 𝑒 ) ) ) |
72 |
4 35 39 41 71
|
f1o2d2 |
⊢ ( 𝜑 → 𝐻 : ( 𝐶 × 𝐸 ) –1-1-onto→ 𝐷 ) |