Metamath Proof Explorer


Theorem evlseu

Description: For a given interpretation of the variables G and of the scalars F , this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 11-Apr-2024)

Ref Expression
Hypotheses evlseu.p 𝑃 = ( 𝐼 mPoly 𝑅 )
evlseu.c 𝐶 = ( Base ‘ 𝑆 )
evlseu.a 𝐴 = ( algSc ‘ 𝑃 )
evlseu.v 𝑉 = ( 𝐼 mVar 𝑅 )
evlseu.i ( 𝜑𝐼𝑊 )
evlseu.r ( 𝜑𝑅 ∈ CRing )
evlseu.s ( 𝜑𝑆 ∈ CRing )
evlseu.f ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
evlseu.g ( 𝜑𝐺 : 𝐼𝐶 )
Assertion evlseu ( 𝜑 → ∃! 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) )

Proof

Step Hyp Ref Expression
1 evlseu.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 evlseu.c 𝐶 = ( Base ‘ 𝑆 )
3 evlseu.a 𝐴 = ( algSc ‘ 𝑃 )
4 evlseu.v 𝑉 = ( 𝐼 mVar 𝑅 )
5 evlseu.i ( 𝜑𝐼𝑊 )
6 evlseu.r ( 𝜑𝑅 ∈ CRing )
7 evlseu.s ( 𝜑𝑆 ∈ CRing )
8 evlseu.f ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
9 evlseu.g ( 𝜑𝐺 : 𝐼𝐶 )
10 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
11 eqid { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } = { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin }
12 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
13 eqid ( .g ‘ ( mulGrp ‘ 𝑆 ) ) = ( .g ‘ ( mulGrp ‘ 𝑆 ) )
14 eqid ( .r𝑆 ) = ( .r𝑆 )
15 eqid ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )
16 1 10 2 11 12 13 14 4 15 5 6 7 8 9 3 evlslem1 ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) )
17 coeq1 ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( 𝑚𝐴 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) )
18 17 eqeq1d ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( ( 𝑚𝐴 ) = 𝐹 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ) )
19 coeq1 ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( 𝑚𝑉 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) )
20 19 eqeq1d ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( ( 𝑚𝑉 ) = 𝐺 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) )
21 18 20 anbi12d ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) ↔ ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) ) )
22 21 rspcev ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) ) → ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) )
23 22 3impb ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥𝑦 ) ) ( .r𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) → ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) )
24 16 23 syl ( 𝜑 → ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) )
25 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
26 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
27 6 26 syl ( 𝜑𝑅 ∈ Ring )
28 1 10 25 3 5 27 mplasclf ( 𝜑𝐴 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) )
29 28 ffund ( 𝜑 → Fun 𝐴 )
30 funcoeqres ( ( Fun 𝐴 ∧ ( 𝑚𝐴 ) = 𝐹 ) → ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 𝐴 ) )
31 29 30 sylan ( ( 𝜑 ∧ ( 𝑚𝐴 ) = 𝐹 ) → ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 𝐴 ) )
32 1 4 10 5 27 mvrf2 ( 𝜑𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) )
33 32 ffund ( 𝜑 → Fun 𝑉 )
34 funcoeqres ( ( Fun 𝑉 ∧ ( 𝑚𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 𝑉 ) )
35 33 34 sylan ( ( 𝜑 ∧ ( 𝑚𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 𝑉 ) )
36 31 35 anim12dan ( ( 𝜑 ∧ ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) ) → ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 𝑉 ) ) )
37 36 ex ( 𝜑 → ( ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) → ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 𝑉 ) ) ) )
38 resundi ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝑚 ↾ ran 𝐴 ) ∪ ( 𝑚 ↾ ran 𝑉 ) )
39 uneq12 ( ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 𝑉 ) ) → ( ( 𝑚 ↾ ran 𝐴 ) ∪ ( 𝑚 ↾ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) )
40 38 39 syl5eq ( ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 𝑉 ) ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) )
41 37 40 syl6 ( 𝜑 → ( ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ) )
42 41 ralrimivw ( 𝜑 → ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ) )
43 eqtr3 ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) )
44 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
45 44 5 6 psrassa ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg )
46 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
47 44 4 46 5 27 mvrf ( 𝜑𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
48 47 frnd ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
49 eqid ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) )
50 eqid ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) )
51 eqid ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) = ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) )
52 49 50 51 46 aspval2 ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) )
53 45 48 52 syl2anc ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) )
54 1 44 4 49 5 6 mplbas2 ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( Base ‘ 𝑃 ) )
55 44 1 10 5 27 mplsubrg ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) )
56 1 44 10 mplval2 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) )
57 56 subsubrg2 ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( SubRing ‘ 𝑃 ) = ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) )
58 55 57 syl ( 𝜑 → ( SubRing ‘ 𝑃 ) = ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) )
59 58 fveq2d ( 𝜑 → ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) = ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) )
60 50 56 ressascl ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( algSc ‘ 𝑃 ) )
61 55 60 syl ( 𝜑 → ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( algSc ‘ 𝑃 ) )
62 3 61 eqtr4id ( 𝜑𝐴 = ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) )
63 62 rneqd ( 𝜑 → ran 𝐴 = ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) )
64 63 uneq1d ( 𝜑 → ( ran 𝐴 ∪ ran 𝑉 ) = ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) )
65 59 64 fveq12d ( 𝜑 → ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) )
66 assaring ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg → ( 𝐼 mPwSer 𝑅 ) ∈ Ring )
67 46 subrgmre ( ( 𝐼 mPwSer 𝑅 ) ∈ Ring → ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Moore ‘ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) )
68 45 66 67 3syl ( 𝜑 → ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Moore ‘ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) )
69 28 frnd ( 𝜑 → ran 𝐴 ⊆ ( Base ‘ 𝑃 ) )
70 63 69 eqsstrrd ( 𝜑 → ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ⊆ ( Base ‘ 𝑃 ) )
71 32 frnd ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) )
72 70 71 unssd ( 𝜑 → ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) )
73 eqid ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) = ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) )
74 51 73 submrc ( ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Moore ‘ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) → ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) )
75 68 55 72 74 syl3anc ( 𝜑 → ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) )
76 65 75 eqtr2d ( 𝜑 → ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) )
77 53 54 76 3eqtr3d ( 𝜑 → ( Base ‘ 𝑃 ) = ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) )
78 77 ad2antrr ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) ) → ( Base ‘ 𝑃 ) = ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) )
79 1 mplring ( ( 𝐼𝑊𝑅 ∈ Ring ) → 𝑃 ∈ Ring )
80 5 27 79 syl2anc ( 𝜑𝑃 ∈ Ring )
81 10 subrgmre ( 𝑃 ∈ Ring → ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) )
82 80 81 syl ( 𝜑 → ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) )
83 82 ad2antrr ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) ) → ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) )
84 simpr ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) ) → ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) )
85 rhmeql ( ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) → dom ( 𝑚𝑛 ) ∈ ( SubRing ‘ 𝑃 ) )
86 85 ad2antlr ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) ) → dom ( 𝑚𝑛 ) ∈ ( SubRing ‘ 𝑃 ) )
87 eqid ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) = ( mrCls ‘ ( SubRing ‘ 𝑃 ) )
88 87 mrcsscl ( ( ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) ∧ dom ( 𝑚𝑛 ) ∈ ( SubRing ‘ 𝑃 ) ) → ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ⊆ dom ( 𝑚𝑛 ) )
89 83 84 86 88 syl3anc ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) ) → ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ⊆ dom ( 𝑚𝑛 ) )
90 78 89 eqsstrd ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) ) → ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚𝑛 ) )
91 90 ex ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) → ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚𝑛 ) ) )
92 simprl ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) )
93 10 2 rhmf ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) → 𝑚 : ( Base ‘ 𝑃 ) ⟶ 𝐶 )
94 ffn ( 𝑚 : ( Base ‘ 𝑃 ) ⟶ 𝐶𝑚 Fn ( Base ‘ 𝑃 ) )
95 92 93 94 3syl ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑚 Fn ( Base ‘ 𝑃 ) )
96 simprr ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) )
97 10 2 rhmf ( 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) → 𝑛 : ( Base ‘ 𝑃 ) ⟶ 𝐶 )
98 ffn ( 𝑛 : ( Base ‘ 𝑃 ) ⟶ 𝐶𝑛 Fn ( Base ‘ 𝑃 ) )
99 96 97 98 3syl ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑛 Fn ( Base ‘ 𝑃 ) )
100 69 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ran 𝐴 ⊆ ( Base ‘ 𝑃 ) )
101 71 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) )
102 100 101 unssd ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ran 𝐴 ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) )
103 fnreseql ( ( 𝑚 Fn ( Base ‘ 𝑃 ) ∧ 𝑛 Fn ( Base ‘ 𝑃 ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) ↔ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) ) )
104 95 99 102 103 syl3anc ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) ↔ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚𝑛 ) ) )
105 fneqeql2 ( ( 𝑚 Fn ( Base ‘ 𝑃 ) ∧ 𝑛 Fn ( Base ‘ 𝑃 ) ) → ( 𝑚 = 𝑛 ↔ ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚𝑛 ) ) )
106 95 99 105 syl2anc ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( 𝑚 = 𝑛 ↔ ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚𝑛 ) ) )
107 91 104 106 3imtr4d ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) → 𝑚 = 𝑛 ) )
108 43 107 syl5 ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ) → 𝑚 = 𝑛 ) )
109 108 ralrimivva ( 𝜑 → ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∀ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ) → 𝑚 = 𝑛 ) )
110 reseq1 ( 𝑚 = 𝑛 → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) )
111 110 eqeq1d ( 𝑚 = 𝑛 → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ↔ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ) )
112 111 rmo4 ( ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ↔ ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∀ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ) → 𝑚 = 𝑛 ) )
113 109 112 sylibr ( 𝜑 → ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) )
114 rmoim ( ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) ) → ( ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 𝐴 ) ∪ ( 𝐺 𝑉 ) ) → ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) ) )
115 42 113 114 sylc ( 𝜑 → ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) )
116 reu5 ( ∃! 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) ↔ ( ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) ∧ ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) ) )
117 24 115 116 sylanbrc ( 𝜑 → ∃! 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚𝐴 ) = 𝐹 ∧ ( 𝑚𝑉 ) = 𝐺 ) )