Step |
Hyp |
Ref |
Expression |
1 |
|
evlseu.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
evlseu.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
3 |
|
evlseu.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
4 |
|
evlseu.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
5 |
|
evlseu.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
evlseu.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
evlseu.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
8 |
|
evlseu.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
9 |
|
evlseu.g |
⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
11 |
|
eqid |
⊢ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } = { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } |
12 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
13 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑆 ) ) = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
14 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
15 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) |
16 |
1 10 2 11 12 13 14 4 15 5 6 7 8 9 3
|
evlslem1 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) ) |
17 |
|
coeq1 |
⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( 𝑚 ∘ 𝐴 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) ) |
18 |
17
|
eqeq1d |
⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ) ) |
19 |
|
coeq1 |
⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( 𝑚 ∘ 𝑉 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( ( 𝑚 ∘ 𝑉 ) = 𝐺 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) ) |
21 |
18 20
|
anbi12d |
⊢ ( 𝑚 = ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) → ( ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ↔ ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) ) ) |
22 |
21
|
rspcev |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) ) → ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |
23 |
22
|
3impb |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝐴 ) = 𝐹 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↦ ( 𝑆 Σg ( 𝑦 ∈ { 𝑧 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑧 “ ℕ ) ∈ Fin } ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑦 ∘f ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) ∘ 𝑉 ) = 𝐺 ) → ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |
24 |
16 23
|
syl |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
26 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
27 |
6 26
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
28 |
1 10 25 3 5 27
|
mplasclf |
⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) |
29 |
28
|
ffund |
⊢ ( 𝜑 → Fun 𝐴 ) |
30 |
|
funcoeqres |
⊢ ( ( Fun 𝐴 ∧ ( 𝑚 ∘ 𝐴 ) = 𝐹 ) → ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ) |
31 |
29 30
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∘ 𝐴 ) = 𝐹 ) → ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ) |
32 |
1 4 10 5 27
|
mvrf2 |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) |
33 |
32
|
ffund |
⊢ ( 𝜑 → Fun 𝑉 ) |
34 |
|
funcoeqres |
⊢ ( ( Fun 𝑉 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) |
35 |
33 34
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) |
36 |
31 35
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) → ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) ) |
37 |
36
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) ) ) |
38 |
|
resundi |
⊢ ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝑚 ↾ ran 𝐴 ) ∪ ( 𝑚 ↾ ran 𝑉 ) ) |
39 |
|
uneq12 |
⊢ ( ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) → ( ( 𝑚 ↾ ran 𝐴 ) ∪ ( 𝑚 ↾ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) |
40 |
38 39
|
eqtrid |
⊢ ( ( ( 𝑚 ↾ ran 𝐴 ) = ( 𝐹 ∘ ◡ 𝐴 ) ∧ ( 𝑚 ↾ ran 𝑉 ) = ( 𝐺 ∘ ◡ 𝑉 ) ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) |
41 |
37 40
|
syl6 |
⊢ ( 𝜑 → ( ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) ) |
42 |
41
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) ) |
43 |
|
eqtr3 |
⊢ ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) ) |
44 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
45 |
44 5 6
|
psrassa |
⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ) |
46 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
47 |
44 4 46 5 27
|
mvrf |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
48 |
47
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
49 |
|
eqid |
⊢ ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) |
50 |
|
eqid |
⊢ ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) |
51 |
|
eqid |
⊢ ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) = ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
52 |
49 50 51 46
|
aspval2 |
⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) ) |
53 |
45 48 52
|
syl2anc |
⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) ) |
54 |
1 44 4 49 5 6
|
mplbas2 |
⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( Base ‘ 𝑃 ) ) |
55 |
44 1 10 5 27
|
mplsubrg |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
56 |
1 44 10
|
mplval2 |
⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
57 |
56
|
subsubrg2 |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( SubRing ‘ 𝑃 ) = ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) |
58 |
55 57
|
syl |
⊢ ( 𝜑 → ( SubRing ‘ 𝑃 ) = ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) |
59 |
58
|
fveq2d |
⊢ ( 𝜑 → ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) = ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ) |
60 |
50 56
|
ressascl |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( algSc ‘ 𝑃 ) ) |
61 |
55 60
|
syl |
⊢ ( 𝜑 → ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( algSc ‘ 𝑃 ) ) |
62 |
3 61
|
eqtr4id |
⊢ ( 𝜑 → 𝐴 = ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
63 |
62
|
rneqd |
⊢ ( 𝜑 → ran 𝐴 = ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
64 |
63
|
uneq1d |
⊢ ( 𝜑 → ( ran 𝐴 ∪ ran 𝑉 ) = ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) |
65 |
59 64
|
fveq12d |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) ) |
66 |
|
assaring |
⊢ ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg → ( 𝐼 mPwSer 𝑅 ) ∈ Ring ) |
67 |
46
|
subrgmre |
⊢ ( ( 𝐼 mPwSer 𝑅 ) ∈ Ring → ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Moore ‘ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) |
68 |
45 66 67
|
3syl |
⊢ ( 𝜑 → ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Moore ‘ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) |
69 |
28
|
frnd |
⊢ ( 𝜑 → ran 𝐴 ⊆ ( Base ‘ 𝑃 ) ) |
70 |
63 69
|
eqsstrrd |
⊢ ( 𝜑 → ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ⊆ ( Base ‘ 𝑃 ) ) |
71 |
32
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) |
72 |
70 71
|
unssd |
⊢ ( 𝜑 → ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) |
73 |
|
eqid |
⊢ ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) = ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) |
74 |
51 73
|
submrc |
⊢ ( ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∈ ( Moore ‘ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) → ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) ) |
75 |
68 55 72 74
|
syl3anc |
⊢ ( 𝜑 → ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∩ 𝒫 ( Base ‘ 𝑃 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) ) |
76 |
65 75
|
eqtr2d |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ‘ ( ran ( algSc ‘ ( 𝐼 mPwSer 𝑅 ) ) ∪ ran 𝑉 ) ) = ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ) |
77 |
53 54 76
|
3eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → ( Base ‘ 𝑃 ) = ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ) |
79 |
1
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
80 |
5 27 79
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
81 |
10
|
subrgmre |
⊢ ( 𝑃 ∈ Ring → ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) ) |
82 |
80 81
|
syl |
⊢ ( 𝜑 → ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) ) |
83 |
82
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) ) |
84 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) |
85 |
|
rhmeql |
⊢ ( ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) → dom ( 𝑚 ∩ 𝑛 ) ∈ ( SubRing ‘ 𝑃 ) ) |
86 |
85
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → dom ( 𝑚 ∩ 𝑛 ) ∈ ( SubRing ‘ 𝑃 ) ) |
87 |
|
eqid |
⊢ ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) = ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) |
88 |
87
|
mrcsscl |
⊢ ( ( ( SubRing ‘ 𝑃 ) ∈ ( Moore ‘ ( Base ‘ 𝑃 ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ∧ dom ( 𝑚 ∩ 𝑛 ) ∈ ( SubRing ‘ 𝑃 ) ) → ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) |
89 |
83 84 86 88
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran 𝐴 ∪ ran 𝑉 ) ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) |
90 |
78 89
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) → ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) |
91 |
90
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) → ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) ) |
92 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ) |
93 |
10 2
|
rhmf |
⊢ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) → 𝑚 : ( Base ‘ 𝑃 ) ⟶ 𝐶 ) |
94 |
|
ffn |
⊢ ( 𝑚 : ( Base ‘ 𝑃 ) ⟶ 𝐶 → 𝑚 Fn ( Base ‘ 𝑃 ) ) |
95 |
92 93 94
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑚 Fn ( Base ‘ 𝑃 ) ) |
96 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) |
97 |
10 2
|
rhmf |
⊢ ( 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) → 𝑛 : ( Base ‘ 𝑃 ) ⟶ 𝐶 ) |
98 |
|
ffn |
⊢ ( 𝑛 : ( Base ‘ 𝑃 ) ⟶ 𝐶 → 𝑛 Fn ( Base ‘ 𝑃 ) ) |
99 |
96 97 98
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → 𝑛 Fn ( Base ‘ 𝑃 ) ) |
100 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ran 𝐴 ⊆ ( Base ‘ 𝑃 ) ) |
101 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) |
102 |
100 101
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ran 𝐴 ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) |
103 |
|
fnreseql |
⊢ ( ( 𝑚 Fn ( Base ‘ 𝑃 ) ∧ 𝑛 Fn ( Base ‘ 𝑃 ) ∧ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) ↔ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) ) |
104 |
95 99 102 103
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) ↔ ( ran 𝐴 ∪ ran 𝑉 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) ) |
105 |
|
fneqeql2 |
⊢ ( ( 𝑚 Fn ( Base ‘ 𝑃 ) ∧ 𝑛 Fn ( Base ‘ 𝑃 ) ) → ( 𝑚 = 𝑛 ↔ ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) ) |
106 |
95 99 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( 𝑚 = 𝑛 ↔ ( Base ‘ 𝑃 ) ⊆ dom ( 𝑚 ∩ 𝑛 ) ) ) |
107 |
91 104 106
|
3imtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) → 𝑚 = 𝑛 ) ) |
108 |
43 107
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∧ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ) ) → ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) → 𝑚 = 𝑛 ) ) |
109 |
108
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∀ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) → 𝑚 = 𝑛 ) ) |
110 |
|
reseq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) ) |
111 |
110
|
eqeq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ↔ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) ) |
112 |
111
|
rmo4 |
⊢ ( ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ↔ ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ∀ 𝑛 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ∧ ( 𝑛 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) → 𝑚 = 𝑛 ) ) |
113 |
109 112
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) |
114 |
|
rmoim |
⊢ ( ∀ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) → ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) ) → ( ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( 𝑚 ↾ ( ran 𝐴 ∪ ran 𝑉 ) ) = ( ( 𝐹 ∘ ◡ 𝐴 ) ∪ ( 𝐺 ∘ ◡ 𝑉 ) ) → ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) ) |
115 |
42 113 114
|
sylc |
⊢ ( 𝜑 → ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |
116 |
|
reu5 |
⊢ ( ∃! 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ↔ ( ∃ 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ∧ ∃* 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) ) |
117 |
24 115 116
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑚 ∈ ( 𝑃 RingHom 𝑆 ) ( ( 𝑚 ∘ 𝐴 ) = 𝐹 ∧ ( 𝑚 ∘ 𝑉 ) = 𝐺 ) ) |