| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlseu.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | evlseu.c | ⊢ 𝐶  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | evlseu.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 4 |  | evlseu.v | ⊢ 𝑉  =  ( 𝐼  mVar  𝑅 ) | 
						
							| 5 |  | evlseu.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | evlseu.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 7 |  | evlseu.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 8 |  | evlseu.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 9 |  | evlseu.g | ⊢ ( 𝜑  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 11 |  | eqid | ⊢ { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  =  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin } | 
						
							| 12 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 13 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑆 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | 
						
							| 14 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  =  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) ) | 
						
							| 16 | 1 10 2 11 12 13 14 4 15 5 6 7 8 9 3 | evlslem1 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∈  ( 𝑃  RingHom  𝑆 )  ∧  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝐴 )  =  𝐹  ∧  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝑉 )  =  𝐺 ) ) | 
						
							| 17 |  | coeq1 | ⊢ ( 𝑚  =  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  →  ( 𝑚  ∘  𝐴 )  =  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝐴 ) ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( 𝑚  =  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  →  ( ( 𝑚  ∘  𝐴 )  =  𝐹  ↔  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝐴 )  =  𝐹 ) ) | 
						
							| 19 |  | coeq1 | ⊢ ( 𝑚  =  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  →  ( 𝑚  ∘  𝑉 )  =  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝑉 ) ) | 
						
							| 20 | 19 | eqeq1d | ⊢ ( 𝑚  =  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  →  ( ( 𝑚  ∘  𝑉 )  =  𝐺  ↔  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝑉 )  =  𝐺 ) ) | 
						
							| 21 | 18 20 | anbi12d | ⊢ ( 𝑚  =  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  →  ( ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 )  ↔  ( ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝐴 )  =  𝐹  ∧  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝑉 )  =  𝐺 ) ) ) | 
						
							| 22 | 21 | rspcev | ⊢ ( ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∈  ( 𝑃  RingHom  𝑆 )  ∧  ( ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝐴 )  =  𝐹  ∧  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝑉 )  =  𝐺 ) )  →  ∃ 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 ) ) | 
						
							| 23 | 22 | 3impb | ⊢ ( ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∈  ( 𝑃  RingHom  𝑆 )  ∧  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝐴 )  =  𝐹  ∧  ( ( 𝑥  ∈  ( Base ‘ 𝑃 )  ↦  ( 𝑆  Σg  ( 𝑦  ∈  { 𝑧  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑧  “  ℕ )  ∈  Fin }  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑦 ) ) ( .r ‘ 𝑆 ) ( ( mulGrp ‘ 𝑆 )  Σg  ( 𝑦  ∘f  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝐺 ) ) ) ) ) )  ∘  𝑉 )  =  𝐺 )  →  ∃ 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 ) ) | 
						
							| 24 | 16 23 | syl | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 ) ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 26 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 27 | 6 26 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 28 | 1 10 25 3 5 27 | mplasclf | ⊢ ( 𝜑  →  𝐴 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 29 | 28 | ffund | ⊢ ( 𝜑  →  Fun  𝐴 ) | 
						
							| 30 |  | funcoeqres | ⊢ ( ( Fun  𝐴  ∧  ( 𝑚  ∘  𝐴 )  =  𝐹 )  →  ( 𝑚  ↾  ran  𝐴 )  =  ( 𝐹  ∘  ◡ 𝐴 ) ) | 
						
							| 31 | 29 30 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∘  𝐴 )  =  𝐹 )  →  ( 𝑚  ↾  ran  𝐴 )  =  ( 𝐹  ∘  ◡ 𝐴 ) ) | 
						
							| 32 | 1 4 10 5 27 | mvrf2 | ⊢ ( 𝜑  →  𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 33 | 32 | ffund | ⊢ ( 𝜑  →  Fun  𝑉 ) | 
						
							| 34 |  | funcoeqres | ⊢ ( ( Fun  𝑉  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 )  →  ( 𝑚  ↾  ran  𝑉 )  =  ( 𝐺  ∘  ◡ 𝑉 ) ) | 
						
							| 35 | 33 34 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 )  →  ( 𝑚  ↾  ran  𝑉 )  =  ( 𝐺  ∘  ◡ 𝑉 ) ) | 
						
							| 36 | 31 35 | anim12dan | ⊢ ( ( 𝜑  ∧  ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 ) )  →  ( ( 𝑚  ↾  ran  𝐴 )  =  ( 𝐹  ∘  ◡ 𝐴 )  ∧  ( 𝑚  ↾  ran  𝑉 )  =  ( 𝐺  ∘  ◡ 𝑉 ) ) ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝜑  →  ( ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 )  →  ( ( 𝑚  ↾  ran  𝐴 )  =  ( 𝐹  ∘  ◡ 𝐴 )  ∧  ( 𝑚  ↾  ran  𝑉 )  =  ( 𝐺  ∘  ◡ 𝑉 ) ) ) ) | 
						
							| 38 |  | resundi | ⊢ ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝑚  ↾  ran  𝐴 )  ∪  ( 𝑚  ↾  ran  𝑉 ) ) | 
						
							| 39 |  | uneq12 | ⊢ ( ( ( 𝑚  ↾  ran  𝐴 )  =  ( 𝐹  ∘  ◡ 𝐴 )  ∧  ( 𝑚  ↾  ran  𝑉 )  =  ( 𝐺  ∘  ◡ 𝑉 ) )  →  ( ( 𝑚  ↾  ran  𝐴 )  ∪  ( 𝑚  ↾  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) ) | 
						
							| 40 | 38 39 | eqtrid | ⊢ ( ( ( 𝑚  ↾  ran  𝐴 )  =  ( 𝐹  ∘  ◡ 𝐴 )  ∧  ( 𝑚  ↾  ran  𝑉 )  =  ( 𝐺  ∘  ◡ 𝑉 ) )  →  ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) ) | 
						
							| 41 | 37 40 | syl6 | ⊢ ( 𝜑  →  ( ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 )  →  ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) ) ) | 
						
							| 42 | 41 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 )  →  ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) ) ) | 
						
							| 43 |  | eqtr3 | ⊢ ( ( ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) )  ∧  ( 𝑛  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) )  →  ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( 𝑛  ↾  ( ran  𝐴  ∪  ran  𝑉 ) ) ) | 
						
							| 44 |  | eqid | ⊢ ( 𝐼  mPwSer  𝑅 )  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 45 | 44 5 6 | psrassa | ⊢ ( 𝜑  →  ( 𝐼  mPwSer  𝑅 )  ∈  AssAlg ) | 
						
							| 46 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 47 | 44 4 46 5 27 | mvrf | ⊢ ( 𝜑  →  𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 48 | 47 | frnd | ⊢ ( 𝜑  →  ran  𝑉  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 49 |  | eqid | ⊢ ( AlgSpan ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( AlgSpan ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 50 |  | eqid | ⊢ ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 51 |  | eqid | ⊢ ( mrCls ‘ ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) )  =  ( mrCls ‘ ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 52 | 49 50 51 46 | aspval2 | ⊢ ( ( ( 𝐼  mPwSer  𝑅 )  ∈  AssAlg  ∧  ran  𝑉  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) )  →  ( ( AlgSpan ‘ ( 𝐼  mPwSer  𝑅 ) ) ‘ ran  𝑉 )  =  ( ( mrCls ‘ ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) ‘ ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 ) ) ) | 
						
							| 53 | 45 48 52 | syl2anc | ⊢ ( 𝜑  →  ( ( AlgSpan ‘ ( 𝐼  mPwSer  𝑅 ) ) ‘ ran  𝑉 )  =  ( ( mrCls ‘ ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) ‘ ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 ) ) ) | 
						
							| 54 | 1 44 4 49 5 6 | mplbas2 | ⊢ ( 𝜑  →  ( ( AlgSpan ‘ ( 𝐼  mPwSer  𝑅 ) ) ‘ ran  𝑉 )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 55 | 44 1 10 5 27 | mplsubrg | ⊢ ( 𝜑  →  ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 56 | 1 44 10 | mplval2 | ⊢ 𝑃  =  ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ 𝑃 ) ) | 
						
							| 57 | 56 | subsubrg2 | ⊢ ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  →  ( SubRing ‘ 𝑃 )  =  ( ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∩  𝒫  ( Base ‘ 𝑃 ) ) ) | 
						
							| 58 | 55 57 | syl | ⊢ ( 𝜑  →  ( SubRing ‘ 𝑃 )  =  ( ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∩  𝒫  ( Base ‘ 𝑃 ) ) ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( 𝜑  →  ( mrCls ‘ ( SubRing ‘ 𝑃 ) )  =  ( mrCls ‘ ( ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∩  𝒫  ( Base ‘ 𝑃 ) ) ) ) | 
						
							| 60 | 50 56 | ressascl | ⊢ ( ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  →  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( algSc ‘ 𝑃 ) ) | 
						
							| 61 | 55 60 | syl | ⊢ ( 𝜑  →  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( algSc ‘ 𝑃 ) ) | 
						
							| 62 | 3 61 | eqtr4id | ⊢ ( 𝜑  →  𝐴  =  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 63 | 62 | rneqd | ⊢ ( 𝜑  →  ran  𝐴  =  ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 64 | 63 | uneq1d | ⊢ ( 𝜑  →  ( ran  𝐴  ∪  ran  𝑉 )  =  ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 ) ) | 
						
							| 65 | 59 64 | fveq12d | ⊢ ( 𝜑  →  ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∩  𝒫  ( Base ‘ 𝑃 ) ) ) ‘ ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 ) ) ) | 
						
							| 66 |  | assaring | ⊢ ( ( 𝐼  mPwSer  𝑅 )  ∈  AssAlg  →  ( 𝐼  mPwSer  𝑅 )  ∈  Ring ) | 
						
							| 67 | 46 | subrgmre | ⊢ ( ( 𝐼  mPwSer  𝑅 )  ∈  Ring  →  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∈  ( Moore ‘ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) ) | 
						
							| 68 | 45 66 67 | 3syl | ⊢ ( 𝜑  →  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∈  ( Moore ‘ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) ) | 
						
							| 69 | 28 | frnd | ⊢ ( 𝜑  →  ran  𝐴  ⊆  ( Base ‘ 𝑃 ) ) | 
						
							| 70 | 63 69 | eqsstrrd | ⊢ ( 𝜑  →  ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ⊆  ( Base ‘ 𝑃 ) ) | 
						
							| 71 | 32 | frnd | ⊢ ( 𝜑  →  ran  𝑉  ⊆  ( Base ‘ 𝑃 ) ) | 
						
							| 72 | 70 71 | unssd | ⊢ ( 𝜑  →  ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 )  ⊆  ( Base ‘ 𝑃 ) ) | 
						
							| 73 |  | eqid | ⊢ ( mrCls ‘ ( ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∩  𝒫  ( Base ‘ 𝑃 ) ) )  =  ( mrCls ‘ ( ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∩  𝒫  ( Base ‘ 𝑃 ) ) ) | 
						
							| 74 | 51 73 | submrc | ⊢ ( ( ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∈  ( Moore ‘ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) )  ∧  ( Base ‘ 𝑃 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∧  ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 )  ⊆  ( Base ‘ 𝑃 ) )  →  ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∩  𝒫  ( Base ‘ 𝑃 ) ) ) ‘ ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 ) )  =  ( ( mrCls ‘ ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) ‘ ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 ) ) ) | 
						
							| 75 | 68 55 72 74 | syl3anc | ⊢ ( 𝜑  →  ( ( mrCls ‘ ( ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∩  𝒫  ( Base ‘ 𝑃 ) ) ) ‘ ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 ) )  =  ( ( mrCls ‘ ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) ‘ ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 ) ) ) | 
						
							| 76 | 65 75 | eqtr2d | ⊢ ( 𝜑  →  ( ( mrCls ‘ ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) ‘ ( ran  ( algSc ‘ ( 𝐼  mPwSer  𝑅 ) )  ∪  ran  𝑉 ) )  =  ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran  𝐴  ∪  ran  𝑉 ) ) ) | 
						
							| 77 | 53 54 76 | 3eqtr3d | ⊢ ( 𝜑  →  ( Base ‘ 𝑃 )  =  ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran  𝐴  ∪  ran  𝑉 ) ) ) | 
						
							| 78 | 77 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  ∧  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) )  →  ( Base ‘ 𝑃 )  =  ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran  𝐴  ∪  ran  𝑉 ) ) ) | 
						
							| 79 | 1 5 27 | mplringd | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 80 | 10 | subrgmre | ⊢ ( 𝑃  ∈  Ring  →  ( SubRing ‘ 𝑃 )  ∈  ( Moore ‘ ( Base ‘ 𝑃 ) ) ) | 
						
							| 81 | 79 80 | syl | ⊢ ( 𝜑  →  ( SubRing ‘ 𝑃 )  ∈  ( Moore ‘ ( Base ‘ 𝑃 ) ) ) | 
						
							| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  ∧  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) )  →  ( SubRing ‘ 𝑃 )  ∈  ( Moore ‘ ( Base ‘ 𝑃 ) ) ) | 
						
							| 83 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  ∧  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) )  →  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) ) | 
						
							| 84 |  | rhmeql | ⊢ ( ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) )  →  dom  ( 𝑚  ∩  𝑛 )  ∈  ( SubRing ‘ 𝑃 ) ) | 
						
							| 85 | 84 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  ∧  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) )  →  dom  ( 𝑚  ∩  𝑛 )  ∈  ( SubRing ‘ 𝑃 ) ) | 
						
							| 86 |  | eqid | ⊢ ( mrCls ‘ ( SubRing ‘ 𝑃 ) )  =  ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) | 
						
							| 87 | 86 | mrcsscl | ⊢ ( ( ( SubRing ‘ 𝑃 )  ∈  ( Moore ‘ ( Base ‘ 𝑃 ) )  ∧  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 )  ∧  dom  ( 𝑚  ∩  𝑛 )  ∈  ( SubRing ‘ 𝑃 ) )  →  ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran  𝐴  ∪  ran  𝑉 ) )  ⊆  dom  ( 𝑚  ∩  𝑛 ) ) | 
						
							| 88 | 82 83 85 87 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  ∧  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) )  →  ( ( mrCls ‘ ( SubRing ‘ 𝑃 ) ) ‘ ( ran  𝐴  ∪  ran  𝑉 ) )  ⊆  dom  ( 𝑚  ∩  𝑛 ) ) | 
						
							| 89 | 78 88 | eqsstrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  ∧  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) )  →  ( Base ‘ 𝑃 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) ) | 
						
							| 90 | 89 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  ( ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 )  →  ( Base ‘ 𝑃 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) ) ) | 
						
							| 91 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ) | 
						
							| 92 | 10 2 | rhmf | ⊢ ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  →  𝑚 : ( Base ‘ 𝑃 ) ⟶ 𝐶 ) | 
						
							| 93 |  | ffn | ⊢ ( 𝑚 : ( Base ‘ 𝑃 ) ⟶ 𝐶  →  𝑚  Fn  ( Base ‘ 𝑃 ) ) | 
						
							| 94 | 91 92 93 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  𝑚  Fn  ( Base ‘ 𝑃 ) ) | 
						
							| 95 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) | 
						
							| 96 | 10 2 | rhmf | ⊢ ( 𝑛  ∈  ( 𝑃  RingHom  𝑆 )  →  𝑛 : ( Base ‘ 𝑃 ) ⟶ 𝐶 ) | 
						
							| 97 |  | ffn | ⊢ ( 𝑛 : ( Base ‘ 𝑃 ) ⟶ 𝐶  →  𝑛  Fn  ( Base ‘ 𝑃 ) ) | 
						
							| 98 | 95 96 97 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  𝑛  Fn  ( Base ‘ 𝑃 ) ) | 
						
							| 99 | 69 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  ran  𝐴  ⊆  ( Base ‘ 𝑃 ) ) | 
						
							| 100 | 71 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  ran  𝑉  ⊆  ( Base ‘ 𝑃 ) ) | 
						
							| 101 | 99 100 | unssd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  ( Base ‘ 𝑃 ) ) | 
						
							| 102 |  | fnreseql | ⊢ ( ( 𝑚  Fn  ( Base ‘ 𝑃 )  ∧  𝑛  Fn  ( Base ‘ 𝑃 )  ∧  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  ( Base ‘ 𝑃 ) )  →  ( ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( 𝑛  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  ↔  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) ) ) | 
						
							| 103 | 94 98 101 102 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  ( ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( 𝑛  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  ↔  ( ran  𝐴  ∪  ran  𝑉 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) ) ) | 
						
							| 104 |  | fneqeql2 | ⊢ ( ( 𝑚  Fn  ( Base ‘ 𝑃 )  ∧  𝑛  Fn  ( Base ‘ 𝑃 ) )  →  ( 𝑚  =  𝑛  ↔  ( Base ‘ 𝑃 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) ) ) | 
						
							| 105 | 94 98 104 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  ( 𝑚  =  𝑛  ↔  ( Base ‘ 𝑃 )  ⊆  dom  ( 𝑚  ∩  𝑛 ) ) ) | 
						
							| 106 | 90 103 105 | 3imtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  ( ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( 𝑛  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  →  𝑚  =  𝑛 ) ) | 
						
							| 107 | 43 106 | syl5 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 𝑃  RingHom  𝑆 )  ∧  𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ) )  →  ( ( ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) )  ∧  ( 𝑛  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) )  →  𝑚  =  𝑛 ) ) | 
						
							| 108 | 107 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ∀ 𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ( ( ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) )  ∧  ( 𝑛  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) )  →  𝑚  =  𝑛 ) ) | 
						
							| 109 |  | reseq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( 𝑛  ↾  ( ran  𝐴  ∪  ran  𝑉 ) ) ) | 
						
							| 110 | 109 | eqeq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) )  ↔  ( 𝑛  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) ) ) | 
						
							| 111 | 110 | rmo4 | ⊢ ( ∃* 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) )  ↔  ∀ 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ∀ 𝑛  ∈  ( 𝑃  RingHom  𝑆 ) ( ( ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) )  ∧  ( 𝑛  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) )  →  𝑚  =  𝑛 ) ) | 
						
							| 112 | 108 111 | sylibr | ⊢ ( 𝜑  →  ∃* 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) ) | 
						
							| 113 |  | rmoim | ⊢ ( ∀ 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 )  →  ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) ) )  →  ( ∃* 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( 𝑚  ↾  ( ran  𝐴  ∪  ran  𝑉 ) )  =  ( ( 𝐹  ∘  ◡ 𝐴 )  ∪  ( 𝐺  ∘  ◡ 𝑉 ) )  →  ∃* 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 ) ) ) | 
						
							| 114 | 42 112 113 | sylc | ⊢ ( 𝜑  →  ∃* 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 ) ) | 
						
							| 115 |  | reu5 | ⊢ ( ∃! 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 )  ↔  ( ∃ 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 )  ∧  ∃* 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 ) ) ) | 
						
							| 116 | 24 114 115 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑚  ∈  ( 𝑃  RingHom  𝑆 ) ( ( 𝑚  ∘  𝐴 )  =  𝐹  ∧  ( 𝑚  ∘  𝑉 )  =  𝐺 ) ) |