Step |
Hyp |
Ref |
Expression |
1 |
|
evlsgsumadd.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsgsumadd.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsgsumadd.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
evlsgsumadd.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
evlsgsumadd.p |
⊢ 𝑃 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) |
6 |
|
evlsgsumadd.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
7 |
|
evlsgsumadd.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
8 |
|
evlsgsumadd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
9 |
|
evlsgsumadd.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
10 |
|
evlsgsumadd.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
11 |
|
evlsgsumadd.y |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝑌 ∈ 𝐵 ) |
12 |
|
evlsgsumadd.n |
⊢ ( 𝜑 → 𝑁 ⊆ ℕ0 ) |
13 |
|
evlsgsumadd.f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) finSupp 0 ) |
14 |
4
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
15 |
10 14
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
16 |
2
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑈 ∈ Ring ) → 𝑊 ∈ Ring ) |
17 |
8 15 16
|
syl2anc |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
18 |
|
ringcmn |
⊢ ( 𝑊 ∈ Ring → 𝑊 ∈ CMnd ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ CMnd ) |
20 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
21 |
9 20
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
22 |
|
ovex |
⊢ ( 𝐾 ↑m 𝐼 ) ∈ V |
23 |
21 22
|
jctir |
⊢ ( 𝜑 → ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) ) |
24 |
5
|
pwsring |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → 𝑃 ∈ Ring ) |
25 |
|
ringmnd |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Mnd ) |
26 |
23 24 25
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ Mnd ) |
27 |
|
nn0ex |
⊢ ℕ0 ∈ V |
28 |
27
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
29 |
28 12
|
ssexd |
⊢ ( 𝜑 → 𝑁 ∈ V ) |
30 |
1 2 4 5 6
|
evlsrhm |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) ) |
31 |
8 9 10 30
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) ) |
32 |
|
rhmghm |
⊢ ( 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) → 𝑄 ∈ ( 𝑊 GrpHom 𝑃 ) ) |
33 |
|
ghmmhm |
⊢ ( 𝑄 ∈ ( 𝑊 GrpHom 𝑃 ) → 𝑄 ∈ ( 𝑊 MndHom 𝑃 ) ) |
34 |
31 32 33
|
3syl |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 MndHom 𝑃 ) ) |
35 |
7 3 19 26 29 34 11 13
|
gsummptmhm |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) = ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) ) |
36 |
35
|
eqcomd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) = ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) ) |