Metamath Proof Explorer


Theorem evlsgsumadd

Description: Polynomial evaluation maps (additive) group sums to group sums. (Contributed by SN, 13-Feb-2024)

Ref Expression
Hypotheses evlsgsumadd.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlsgsumadd.w 𝑊 = ( 𝐼 mPoly 𝑈 )
evlsgsumadd.0 0 = ( 0g𝑊 )
evlsgsumadd.u 𝑈 = ( 𝑆s 𝑅 )
evlsgsumadd.p 𝑃 = ( 𝑆s ( 𝐾m 𝐼 ) )
evlsgsumadd.k 𝐾 = ( Base ‘ 𝑆 )
evlsgsumadd.b 𝐵 = ( Base ‘ 𝑊 )
evlsgsumadd.i ( 𝜑𝐼𝑉 )
evlsgsumadd.s ( 𝜑𝑆 ∈ CRing )
evlsgsumadd.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evlsgsumadd.y ( ( 𝜑𝑥𝑁 ) → 𝑌𝐵 )
evlsgsumadd.n ( 𝜑𝑁 ⊆ ℕ0 )
evlsgsumadd.f ( 𝜑 → ( 𝑥𝑁𝑌 ) finSupp 0 )
Assertion evlsgsumadd ( 𝜑 → ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥𝑁𝑌 ) ) ) = ( 𝑃 Σg ( 𝑥𝑁 ↦ ( 𝑄𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 evlsgsumadd.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlsgsumadd.w 𝑊 = ( 𝐼 mPoly 𝑈 )
3 evlsgsumadd.0 0 = ( 0g𝑊 )
4 evlsgsumadd.u 𝑈 = ( 𝑆s 𝑅 )
5 evlsgsumadd.p 𝑃 = ( 𝑆s ( 𝐾m 𝐼 ) )
6 evlsgsumadd.k 𝐾 = ( Base ‘ 𝑆 )
7 evlsgsumadd.b 𝐵 = ( Base ‘ 𝑊 )
8 evlsgsumadd.i ( 𝜑𝐼𝑉 )
9 evlsgsumadd.s ( 𝜑𝑆 ∈ CRing )
10 evlsgsumadd.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
11 evlsgsumadd.y ( ( 𝜑𝑥𝑁 ) → 𝑌𝐵 )
12 evlsgsumadd.n ( 𝜑𝑁 ⊆ ℕ0 )
13 evlsgsumadd.f ( 𝜑 → ( 𝑥𝑁𝑌 ) finSupp 0 )
14 4 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
15 10 14 syl ( 𝜑𝑈 ∈ Ring )
16 2 mplring ( ( 𝐼𝑉𝑈 ∈ Ring ) → 𝑊 ∈ Ring )
17 8 15 16 syl2anc ( 𝜑𝑊 ∈ Ring )
18 ringcmn ( 𝑊 ∈ Ring → 𝑊 ∈ CMnd )
19 17 18 syl ( 𝜑𝑊 ∈ CMnd )
20 crngring ( 𝑆 ∈ CRing → 𝑆 ∈ Ring )
21 9 20 syl ( 𝜑𝑆 ∈ Ring )
22 ovex ( 𝐾m 𝐼 ) ∈ V
23 21 22 jctir ( 𝜑 → ( 𝑆 ∈ Ring ∧ ( 𝐾m 𝐼 ) ∈ V ) )
24 5 pwsring ( ( 𝑆 ∈ Ring ∧ ( 𝐾m 𝐼 ) ∈ V ) → 𝑃 ∈ Ring )
25 ringmnd ( 𝑃 ∈ Ring → 𝑃 ∈ Mnd )
26 23 24 25 3syl ( 𝜑𝑃 ∈ Mnd )
27 nn0ex 0 ∈ V
28 27 a1i ( 𝜑 → ℕ0 ∈ V )
29 28 12 ssexd ( 𝜑𝑁 ∈ V )
30 1 2 4 5 6 evlsrhm ( ( 𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) )
31 8 9 10 30 syl3anc ( 𝜑𝑄 ∈ ( 𝑊 RingHom 𝑃 ) )
32 rhmghm ( 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) → 𝑄 ∈ ( 𝑊 GrpHom 𝑃 ) )
33 ghmmhm ( 𝑄 ∈ ( 𝑊 GrpHom 𝑃 ) → 𝑄 ∈ ( 𝑊 MndHom 𝑃 ) )
34 31 32 33 3syl ( 𝜑𝑄 ∈ ( 𝑊 MndHom 𝑃 ) )
35 7 3 19 26 29 34 11 13 gsummptmhm ( 𝜑 → ( 𝑃 Σg ( 𝑥𝑁 ↦ ( 𝑄𝑌 ) ) ) = ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥𝑁𝑌 ) ) ) )
36 35 eqcomd ( 𝜑 → ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥𝑁𝑌 ) ) ) = ( 𝑃 Σg ( 𝑥𝑁 ↦ ( 𝑄𝑌 ) ) ) )