| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlsgsummul.q | ⊢ 𝑄  =  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 ) | 
						
							| 2 |  | evlsgsummul.w | ⊢ 𝑊  =  ( 𝐼  mPoly  𝑈 ) | 
						
							| 3 |  | evlsgsummul.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑊 ) | 
						
							| 4 |  | evlsgsummul.1 | ⊢  1   =  ( 1r ‘ 𝑊 ) | 
						
							| 5 |  | evlsgsummul.u | ⊢ 𝑈  =  ( 𝑆  ↾s  𝑅 ) | 
						
							| 6 |  | evlsgsummul.p | ⊢ 𝑃  =  ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) | 
						
							| 7 |  | evlsgsummul.h | ⊢ 𝐻  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 8 |  | evlsgsummul.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 9 |  | evlsgsummul.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 10 |  | evlsgsummul.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 11 |  | evlsgsummul.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 12 |  | evlsgsummul.r | ⊢ ( 𝜑  →  𝑅  ∈  ( SubRing ‘ 𝑆 ) ) | 
						
							| 13 |  | evlsgsummul.y | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑁 )  →  𝑌  ∈  𝐵 ) | 
						
							| 14 |  | evlsgsummul.n | ⊢ ( 𝜑  →  𝑁  ⊆  ℕ0 ) | 
						
							| 15 |  | evlsgsummul.f | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑁  ↦  𝑌 )  finSupp   1  ) | 
						
							| 16 | 3 9 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 17 | 3 4 | ringidval | ⊢  1   =  ( 0g ‘ 𝐺 ) | 
						
							| 18 | 5 | subrgcrng | ⊢ ( ( 𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  𝑈  ∈  CRing ) | 
						
							| 19 | 11 12 18 | syl2anc | ⊢ ( 𝜑  →  𝑈  ∈  CRing ) | 
						
							| 20 | 2 | mplcrng | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑈  ∈  CRing )  →  𝑊  ∈  CRing ) | 
						
							| 21 | 10 19 20 | syl2anc | ⊢ ( 𝜑  →  𝑊  ∈  CRing ) | 
						
							| 22 | 3 | crngmgp | ⊢ ( 𝑊  ∈  CRing  →  𝐺  ∈  CMnd ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 24 |  | crngring | ⊢ ( 𝑆  ∈  CRing  →  𝑆  ∈  Ring ) | 
						
							| 25 | 11 24 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 26 |  | ovex | ⊢ ( 𝐾  ↑m  𝐼 )  ∈  V | 
						
							| 27 | 25 26 | jctir | ⊢ ( 𝜑  →  ( 𝑆  ∈  Ring  ∧  ( 𝐾  ↑m  𝐼 )  ∈  V ) ) | 
						
							| 28 | 6 | pwsring | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( 𝐾  ↑m  𝐼 )  ∈  V )  →  𝑃  ∈  Ring ) | 
						
							| 29 | 7 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  𝐻  ∈  Mnd ) | 
						
							| 30 | 27 28 29 | 3syl | ⊢ ( 𝜑  →  𝐻  ∈  Mnd ) | 
						
							| 31 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 33 | 32 14 | ssexd | ⊢ ( 𝜑  →  𝑁  ∈  V ) | 
						
							| 34 | 1 2 5 6 8 | evlsrhm | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  𝑄  ∈  ( 𝑊  RingHom  𝑃 ) ) | 
						
							| 35 | 10 11 12 34 | syl3anc | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑊  RingHom  𝑃 ) ) | 
						
							| 36 | 3 7 | rhmmhm | ⊢ ( 𝑄  ∈  ( 𝑊  RingHom  𝑃 )  →  𝑄  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 38 | 16 17 23 30 33 37 13 15 | gsummptmhm | ⊢ ( 𝜑  →  ( 𝐻  Σg  ( 𝑥  ∈  𝑁  ↦  ( 𝑄 ‘ 𝑌 ) ) )  =  ( 𝑄 ‘ ( 𝐺  Σg  ( 𝑥  ∈  𝑁  ↦  𝑌 ) ) ) ) | 
						
							| 39 | 38 | eqcomd | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐺  Σg  ( 𝑥  ∈  𝑁  ↦  𝑌 ) ) )  =  ( 𝐻  Σg  ( 𝑥  ∈  𝑁  ↦  ( 𝑄 ‘ 𝑌 ) ) ) ) |