| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlslem1.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | evlslem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | evlslem1.c | ⊢ 𝐶  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | evlslem1.d | ⊢ 𝐷  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 5 |  | evlslem1.t | ⊢ 𝑇  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 6 |  | evlslem1.x | ⊢  ↑   =  ( .g ‘ 𝑇 ) | 
						
							| 7 |  | evlslem1.m | ⊢  ·   =  ( .r ‘ 𝑆 ) | 
						
							| 8 |  | evlslem1.v | ⊢ 𝑉  =  ( 𝐼  mVar  𝑅 ) | 
						
							| 9 |  | evlslem1.e | ⊢ 𝐸  =  ( 𝑝  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 10 |  | evlslem1.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 11 |  | evlslem1.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 12 |  | evlslem1.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 13 |  | evlslem1.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 14 |  | evlslem1.g | ⊢ ( 𝜑  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 15 |  | evlslem1.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 16 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 17 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 18 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 19 | 11 | crngringd | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 20 | 1 10 19 | mplringd | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 21 | 12 | crngringd | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 22 |  | 2fveq3 | ⊢ ( 𝑥  =  ( 1r ‘ 𝑅 )  →  ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) )  =  ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑥  =  ( 1r ‘ 𝑅 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) | 
						
							| 24 | 22 23 | eqeq12d | ⊢ ( 𝑥  =  ( 1r ‘ 𝑅 )  →  ( ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) )  =  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 27 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 28 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  𝑥  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 30 | 1 4 25 26 15 27 28 29 | mplascl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐴 ‘ 𝑥 )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) )  =  ( 𝐸 ‘ ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 32 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  𝑅  ∈  CRing ) | 
						
							| 33 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  𝑆  ∈  CRing ) | 
						
							| 34 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 35 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 36 | 4 | psrbag0 | ⊢ ( 𝐼  ∈  𝑊  →  ( 𝐼  ×  { 0 } )  ∈  𝐷 ) | 
						
							| 37 | 10 36 | syl | ⊢ ( 𝜑  →  ( 𝐼  ×  { 0 } )  ∈  𝐷 ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐼  ×  { 0 } )  ∈  𝐷 ) | 
						
							| 39 | 1 2 3 26 4 5 6 7 8 9 27 32 33 34 35 25 38 29 | evlslem3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐸 ‘ ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝑇  Σg  ( ( 𝐼  ×  { 0 } )  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 40 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  0  ∈  ℤ ) | 
						
							| 41 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑥 )  ∈  V ) | 
						
							| 42 |  | fconstmpt | ⊢ ( 𝐼  ×  { 0 } )  =  ( 𝑥  ∈  𝐼  ↦  0 ) | 
						
							| 43 | 42 | a1i | ⊢ ( 𝜑  →  ( 𝐼  ×  { 0 } )  =  ( 𝑥  ∈  𝐼  ↦  0 ) ) | 
						
							| 44 | 14 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐼  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 45 | 10 40 41 43 44 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐼  ×  { 0 } )  ∘f   ↑  𝐺 )  =  ( 𝑥  ∈  𝐼  ↦  ( 0  ↑  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 46 | 14 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 47 | 5 3 | mgpbas | ⊢ 𝐶  =  ( Base ‘ 𝑇 ) | 
						
							| 48 | 5 17 | ringidval | ⊢ ( 1r ‘ 𝑆 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 49 | 47 48 6 | mulg0 | ⊢ ( ( 𝐺 ‘ 𝑥 )  ∈  𝐶  →  ( 0  ↑  ( 𝐺 ‘ 𝑥 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 50 | 46 49 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 0  ↑  ( 𝐺 ‘ 𝑥 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 51 | 50 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 0  ↑  ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 52 | 45 51 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐼  ×  { 0 } )  ∘f   ↑  𝐺 )  =  ( 𝑥  ∈  𝐼  ↦  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( 𝜑  →  ( 𝑇  Σg  ( ( 𝐼  ×  { 0 } )  ∘f   ↑  𝐺 ) )  =  ( 𝑇  Σg  ( 𝑥  ∈  𝐼  ↦  ( 1r ‘ 𝑆 ) ) ) ) | 
						
							| 54 | 5 | crngmgp | ⊢ ( 𝑆  ∈  CRing  →  𝑇  ∈  CMnd ) | 
						
							| 55 | 12 54 | syl | ⊢ ( 𝜑  →  𝑇  ∈  CMnd ) | 
						
							| 56 | 55 | cmnmndd | ⊢ ( 𝜑  →  𝑇  ∈  Mnd ) | 
						
							| 57 | 48 | gsumz | ⊢ ( ( 𝑇  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  ( 𝑇  Σg  ( 𝑥  ∈  𝐼  ↦  ( 1r ‘ 𝑆 ) ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 58 | 56 10 57 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇  Σg  ( 𝑥  ∈  𝐼  ↦  ( 1r ‘ 𝑆 ) ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 59 | 53 58 | eqtrd | ⊢ ( 𝜑  →  ( 𝑇  Σg  ( ( 𝐼  ×  { 0 } )  ∘f   ↑  𝐺 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑇  Σg  ( ( 𝐼  ×  { 0 } )  ∘f   ↑  𝐺 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝑇  Σg  ( ( 𝐼  ×  { 0 } )  ∘f   ↑  𝐺 ) ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 62 | 26 3 | rhmf | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) | 
						
							| 63 | 13 62 | syl | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) | 
						
							| 64 | 63 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 65 | 3 7 17 | ringridm | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( 1r ‘ 𝑆 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 66 | 21 64 65 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( 1r ‘ 𝑆 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 67 | 61 66 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝑇  Σg  ( ( 𝐼  ×  { 0 } )  ∘f   ↑  𝐺 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 68 | 31 39 67 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 69 | 68 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 70 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 71 | 26 70 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 72 | 19 71 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 73 | 24 69 72 | rspcdva | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) )  =  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) | 
						
							| 74 | 1 | mplassa | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  AssAlg ) | 
						
							| 75 | 10 11 74 | syl2anc | ⊢ ( 𝜑  →  𝑃  ∈  AssAlg ) | 
						
							| 76 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 77 | 15 76 | asclrhm | ⊢ ( 𝑃  ∈  AssAlg  →  𝐴  ∈  ( ( Scalar ‘ 𝑃 )  RingHom  𝑃 ) ) | 
						
							| 78 | 75 77 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ( ( Scalar ‘ 𝑃 )  RingHom  𝑃 ) ) | 
						
							| 79 | 1 10 11 | mplsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 80 | 79 | oveq1d | ⊢ ( 𝜑  →  ( 𝑅  RingHom  𝑃 )  =  ( ( Scalar ‘ 𝑃 )  RingHom  𝑃 ) ) | 
						
							| 81 | 78 80 | eleqtrrd | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝑅  RingHom  𝑃 ) ) | 
						
							| 82 | 70 16 | rhm1 | ⊢ ( 𝐴  ∈  ( 𝑅  RingHom  𝑃 )  →  ( 𝐴 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 83 | 81 82 | syl | ⊢ ( 𝜑  →  ( 𝐴 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 84 | 83 | fveq2d | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) )  =  ( 𝐸 ‘ ( 1r ‘ 𝑃 ) ) ) | 
						
							| 85 | 70 17 | rhm1 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 86 | 13 85 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 87 | 73 84 86 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 1r ‘ 𝑃 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 88 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 89 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 90 | 20 | ringgrpd | ⊢ ( 𝜑  →  𝑃  ∈  Grp ) | 
						
							| 91 | 21 | ringgrpd | ⊢ ( 𝜑  →  𝑆  ∈  Grp ) | 
						
							| 92 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 93 |  | ringcmn | ⊢ ( 𝑆  ∈  Ring  →  𝑆  ∈  CMnd ) | 
						
							| 94 | 21 93 | syl | ⊢ ( 𝜑  →  𝑆  ∈  CMnd ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  𝑆  ∈  CMnd ) | 
						
							| 96 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 97 | 4 96 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 98 | 97 | a1i | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  𝐷  ∈  V ) | 
						
							| 99 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  𝐼  ∈  𝑊 ) | 
						
							| 100 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  𝑅  ∈  CRing ) | 
						
							| 101 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  𝑆  ∈  CRing ) | 
						
							| 102 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 103 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 104 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  𝑝  ∈  𝐵 ) | 
						
							| 105 | 1 2 3 4 5 6 7 8 9 99 100 101 102 103 104 | evlslem6 | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶  ∧  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) ) | 
						
							| 106 | 105 | simpld | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) | 
						
							| 107 | 105 | simprd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) | 
						
							| 108 | 3 92 95 98 106 107 | gsumcl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  ∈  𝐶 ) | 
						
							| 109 | 108 9 | fmptd | ⊢ ( 𝜑  →  𝐸 : 𝐵 ⟶ 𝐶 ) | 
						
							| 110 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 111 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝑥  ∈  𝐵 ) | 
						
							| 112 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝑦  ∈  𝐵 ) | 
						
							| 113 | 1 2 110 88 111 112 | mpladd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  =  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 114 | 113 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 )  =  ( ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 ) ‘ 𝑏 ) ) | 
						
							| 115 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 116 | 1 26 2 4 115 | mplelf | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 117 | 116 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  Fn  𝐷 ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝑥  Fn  𝐷 ) | 
						
							| 119 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 120 | 1 26 2 4 119 | mplelf | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 121 | 120 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  Fn  𝐷 ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝑦  Fn  𝐷 ) | 
						
							| 123 | 97 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝐷  ∈  V ) | 
						
							| 124 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝑏  ∈  𝐷 ) | 
						
							| 125 |  | fnfvof | ⊢ ( ( ( 𝑥  Fn  𝐷  ∧  𝑦  Fn  𝐷 )  ∧  ( 𝐷  ∈  V  ∧  𝑏  ∈  𝐷 ) )  →  ( ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 ) ‘ 𝑏 )  =  ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) | 
						
							| 126 | 118 122 123 124 125 | syl22anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 ) ‘ 𝑏 )  =  ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) | 
						
							| 127 | 114 126 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 )  =  ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) | 
						
							| 128 | 127 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  =  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) ) | 
						
							| 129 |  | rhmghm | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 130 | 13 129 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 131 | 130 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 132 | 116 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( 𝑥 ‘ 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 133 | 120 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( 𝑦 ‘ 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 134 | 26 110 89 | ghmlin | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ( 𝑥 ‘ 𝑏 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑦 ‘ 𝑏 )  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) )  =  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) ) | 
						
							| 135 | 131 132 133 134 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) )  =  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) ) | 
						
							| 136 | 128 135 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  =  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) ) | 
						
							| 137 | 136 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 138 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝑆  ∈  Ring ) | 
						
							| 139 | 63 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) | 
						
							| 140 | 139 132 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ∈  𝐶 ) | 
						
							| 141 | 139 133 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ∈  𝐶 ) | 
						
							| 142 | 55 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝑇  ∈  CMnd ) | 
						
							| 143 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 144 | 4 47 6 142 124 143 | psrbagev2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) )  ∈  𝐶 ) | 
						
							| 145 | 3 89 7 | ringdir | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ∈  𝐶  ∧  ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ∈  𝐶  ∧  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) )  ∈  𝐶 ) )  →  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 146 | 138 140 141 144 145 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 147 | 137 146 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 148 | 147 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 149 | 97 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐷  ∈  V ) | 
						
							| 150 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  ∈  V ) | 
						
							| 151 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  ∈  V ) | 
						
							| 152 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 153 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 154 | 149 150 151 152 153 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  ∘f  ( +g ‘ 𝑆 ) ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 155 | 148 154 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  =  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  ∘f  ( +g ‘ 𝑆 ) ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 156 | 155 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  =  ( 𝑆  Σg  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  ∘f  ( +g ‘ 𝑆 ) ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) ) | 
						
							| 157 | 94 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑆  ∈  CMnd ) | 
						
							| 158 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 159 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑅  ∈  CRing ) | 
						
							| 160 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑆  ∈  CRing ) | 
						
							| 161 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 162 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 163 | 1 2 3 4 5 6 7 8 9 158 159 160 161 162 115 | evlslem6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶  ∧  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) ) | 
						
							| 164 | 163 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) | 
						
							| 165 | 1 2 3 4 5 6 7 8 9 158 159 160 161 162 119 | evlslem6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶  ∧  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) ) | 
						
							| 166 | 165 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) | 
						
							| 167 | 163 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) | 
						
							| 168 | 165 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) | 
						
							| 169 | 3 92 89 157 149 164 166 167 168 | gsumadd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  ∘f  ( +g ‘ 𝑆 ) ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) )  =  ( ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ( +g ‘ 𝑆 ) ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) ) | 
						
							| 170 | 156 169 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  =  ( ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ( +g ‘ 𝑆 ) ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) ) | 
						
							| 171 | 90 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑃  ∈  Grp ) | 
						
							| 172 | 2 88 | grpcl | ⊢ ( ( 𝑃  ∈  Grp  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 173 | 171 115 119 172 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 174 |  | fveq1 | ⊢ ( 𝑝  =  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  →  ( 𝑝 ‘ 𝑏 )  =  ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) | 
						
							| 175 | 174 | fveq2d | ⊢ ( 𝑝  =  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  →  ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  =  ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) ) | 
						
							| 176 | 175 | oveq1d | ⊢ ( 𝑝  =  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  →  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 177 | 176 | mpteq2dv | ⊢ ( 𝑝  =  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 178 | 177 | oveq2d | ⊢ ( 𝑝  =  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 179 |  | ovex | ⊢ ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  ∈  V | 
						
							| 180 | 178 9 179 | fvmpt | ⊢ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  ∈  𝐵  →  ( 𝐸 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 181 | 173 180 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 182 |  | fveq1 | ⊢ ( 𝑝  =  𝑥  →  ( 𝑝 ‘ 𝑏 )  =  ( 𝑥 ‘ 𝑏 ) ) | 
						
							| 183 | 182 | fveq2d | ⊢ ( 𝑝  =  𝑥  →  ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  =  ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ) | 
						
							| 184 | 183 | oveq1d | ⊢ ( 𝑝  =  𝑥  →  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 185 | 184 | mpteq2dv | ⊢ ( 𝑝  =  𝑥  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 186 | 185 | oveq2d | ⊢ ( 𝑝  =  𝑥  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 187 |  | ovex | ⊢ ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  ∈  V | 
						
							| 188 | 186 9 187 | fvmpt | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝐸 ‘ 𝑥 )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 189 | 115 188 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ 𝑥 )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 190 |  | fveq1 | ⊢ ( 𝑝  =  𝑦  →  ( 𝑝 ‘ 𝑏 )  =  ( 𝑦 ‘ 𝑏 ) ) | 
						
							| 191 | 190 | fveq2d | ⊢ ( 𝑝  =  𝑦  →  ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  =  ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) | 
						
							| 192 | 191 | oveq1d | ⊢ ( 𝑝  =  𝑦  →  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 193 | 192 | mpteq2dv | ⊢ ( 𝑝  =  𝑦  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 194 | 193 | oveq2d | ⊢ ( 𝑝  =  𝑦  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 195 |  | ovex | ⊢ ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  ∈  V | 
						
							| 196 | 194 9 195 | fvmpt | ⊢ ( 𝑦  ∈  𝐵  →  ( 𝐸 ‘ 𝑦 )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 197 | 196 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ 𝑦 )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 198 | 189 197 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐸 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐸 ‘ 𝑦 ) )  =  ( ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ( +g ‘ 𝑆 ) ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) ) | 
						
							| 199 | 170 181 198 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) )  =  ( ( 𝐸 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐸 ‘ 𝑦 ) ) ) | 
						
							| 200 | 2 3 88 89 90 91 109 199 | isghmd | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑃  GrpHom  𝑆 ) ) | 
						
							| 201 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 202 | 201 5 | rhmmhm | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  𝑇 ) ) | 
						
							| 203 | 13 202 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  𝑇 ) ) | 
						
							| 204 | 203 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  𝑇 ) ) | 
						
							| 205 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 206 | 1 26 2 4 205 | mplelf | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝑥 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 207 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝑧  ∈  𝐷 ) | 
						
							| 208 | 206 207 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝑥 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 209 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 210 | 1 26 2 4 209 | mplelf | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 211 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝑤  ∈  𝐷 ) | 
						
							| 212 | 210 211 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝑦 ‘ 𝑤 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 213 | 201 26 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 214 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 215 | 201 214 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 216 | 5 7 | mgpplusg | ⊢  ·   =  ( +g ‘ 𝑇 ) | 
						
							| 217 | 213 215 216 | mhmlin | ⊢ ( ( 𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  𝑇 )  ∧  ( 𝑥 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑦 ‘ 𝑤 )  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) )  =  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ·  ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 218 | 204 208 212 217 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) )  =  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ·  ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 219 | 56 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  𝑇  ∈  Mnd ) | 
						
							| 220 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝑧  ∈  𝐷 ) | 
						
							| 221 | 4 | psrbagf | ⊢ ( 𝑧  ∈  𝐷  →  𝑧 : 𝐼 ⟶ ℕ0 ) | 
						
							| 222 | 220 221 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝑧 : 𝐼 ⟶ ℕ0 ) | 
						
							| 223 | 222 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( 𝑧 ‘ 𝑣 )  ∈  ℕ0 ) | 
						
							| 224 | 4 | psrbagf | ⊢ ( 𝑤  ∈  𝐷  →  𝑤 : 𝐼 ⟶ ℕ0 ) | 
						
							| 225 | 224 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝑤 : 𝐼 ⟶ ℕ0 ) | 
						
							| 226 | 225 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( 𝑤 ‘ 𝑣 )  ∈  ℕ0 ) | 
						
							| 227 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 228 | 227 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑣 )  ∈  𝐶 ) | 
						
							| 229 | 47 6 216 | mulgnn0dir | ⊢ ( ( 𝑇  ∈  Mnd  ∧  ( ( 𝑧 ‘ 𝑣 )  ∈  ℕ0  ∧  ( 𝑤 ‘ 𝑣 )  ∈  ℕ0  ∧  ( 𝐺 ‘ 𝑣 )  ∈  𝐶 ) )  →  ( ( ( 𝑧 ‘ 𝑣 )  +  ( 𝑤 ‘ 𝑣 ) )  ↑  ( 𝐺 ‘ 𝑣 ) )  =  ( ( ( 𝑧 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) )  ·  ( ( 𝑤 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 230 | 219 223 226 228 229 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( ( ( 𝑧 ‘ 𝑣 )  +  ( 𝑤 ‘ 𝑣 ) )  ↑  ( 𝐺 ‘ 𝑣 ) )  =  ( ( ( 𝑧 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) )  ·  ( ( 𝑤 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 231 | 230 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑣  ∈  𝐼  ↦  ( ( ( 𝑧 ‘ 𝑣 )  +  ( 𝑤 ‘ 𝑣 ) )  ↑  ( 𝐺 ‘ 𝑣 ) ) )  =  ( 𝑣  ∈  𝐼  ↦  ( ( ( 𝑧 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) )  ·  ( ( 𝑤 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) ) ) ) ) | 
						
							| 232 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 233 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( ( 𝑧 ‘ 𝑣 )  +  ( 𝑤 ‘ 𝑣 ) )  ∈  V ) | 
						
							| 234 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑣 )  ∈  V ) | 
						
							| 235 | 222 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝑧  Fn  𝐼 ) | 
						
							| 236 | 225 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝑤  Fn  𝐼 ) | 
						
							| 237 |  | inidm | ⊢ ( 𝐼  ∩  𝐼 )  =  𝐼 | 
						
							| 238 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( 𝑧 ‘ 𝑣 )  =  ( 𝑧 ‘ 𝑣 ) ) | 
						
							| 239 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( 𝑤 ‘ 𝑣 )  =  ( 𝑤 ‘ 𝑣 ) ) | 
						
							| 240 | 235 236 232 232 237 238 239 | offval | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑧  ∘f   +  𝑤 )  =  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑧 ‘ 𝑣 )  +  ( 𝑤 ‘ 𝑣 ) ) ) ) | 
						
							| 241 | 14 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑣  ∈  𝐼  ↦  ( 𝐺 ‘ 𝑣 ) ) ) | 
						
							| 242 | 241 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝐺  =  ( 𝑣  ∈  𝐼  ↦  ( 𝐺 ‘ 𝑣 ) ) ) | 
						
							| 243 | 232 233 234 240 242 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( ( 𝑧  ∘f   +  𝑤 )  ∘f   ↑  𝐺 )  =  ( 𝑣  ∈  𝐼  ↦  ( ( ( 𝑧 ‘ 𝑣 )  +  ( 𝑤 ‘ 𝑣 ) )  ↑  ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 244 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( ( 𝑧 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) )  ∈  V ) | 
						
							| 245 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( ( 𝑤 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) )  ∈  V ) | 
						
							| 246 | 14 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐼 ) | 
						
							| 247 | 246 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝐺  Fn  𝐼 ) | 
						
							| 248 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  ∧  𝑣  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑣 )  =  ( 𝐺 ‘ 𝑣 ) ) | 
						
							| 249 | 235 247 232 232 237 238 248 | offval | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑧  ∘f   ↑  𝐺 )  =  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑧 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 250 | 236 247 232 232 237 239 248 | offval | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑤  ∘f   ↑  𝐺 )  =  ( 𝑣  ∈  𝐼  ↦  ( ( 𝑤 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) ) ) ) | 
						
							| 251 | 232 244 245 249 250 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( ( 𝑧  ∘f   ↑  𝐺 )  ∘f   ·  ( 𝑤  ∘f   ↑  𝐺 ) )  =  ( 𝑣  ∈  𝐼  ↦  ( ( ( 𝑧 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) )  ·  ( ( 𝑤 ‘ 𝑣 )  ↑  ( 𝐺 ‘ 𝑣 ) ) ) ) ) | 
						
							| 252 | 231 243 251 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( ( 𝑧  ∘f   +  𝑤 )  ∘f   ↑  𝐺 )  =  ( ( 𝑧  ∘f   ↑  𝐺 )  ∘f   ·  ( 𝑤  ∘f   ↑  𝐺 ) ) ) | 
						
							| 253 | 252 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑇  Σg  ( ( 𝑧  ∘f   +  𝑤 )  ∘f   ↑  𝐺 ) )  =  ( 𝑇  Σg  ( ( 𝑧  ∘f   ↑  𝐺 )  ∘f   ·  ( 𝑤  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 254 | 55 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝑇  ∈  CMnd ) | 
						
							| 255 | 4 47 6 48 254 220 227 | psrbagev1 | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( ( 𝑧  ∘f   ↑  𝐺 ) : 𝐼 ⟶ 𝐶  ∧  ( 𝑧  ∘f   ↑  𝐺 )  finSupp  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 256 | 255 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑧  ∘f   ↑  𝐺 ) : 𝐼 ⟶ 𝐶 ) | 
						
							| 257 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  𝑤  ∈  𝐷 ) | 
						
							| 258 | 4 47 6 48 254 257 227 | psrbagev1 | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( ( 𝑤  ∘f   ↑  𝐺 ) : 𝐼 ⟶ 𝐶  ∧  ( 𝑤  ∘f   ↑  𝐺 )  finSupp  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 259 | 258 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑤  ∘f   ↑  𝐺 ) : 𝐼 ⟶ 𝐶 ) | 
						
							| 260 | 255 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑧  ∘f   ↑  𝐺 )  finSupp  ( 1r ‘ 𝑆 ) ) | 
						
							| 261 | 258 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑤  ∘f   ↑  𝐺 )  finSupp  ( 1r ‘ 𝑆 ) ) | 
						
							| 262 | 47 48 216 254 232 256 259 260 261 | gsumadd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑇  Σg  ( ( 𝑧  ∘f   ↑  𝐺 )  ∘f   ·  ( 𝑤  ∘f   ↑  𝐺 ) ) )  =  ( ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 263 | 253 262 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑇  Σg  ( ( 𝑧  ∘f   +  𝑤 )  ∘f   ↑  𝐺 ) )  =  ( ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 264 | 263 | adantrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝑇  Σg  ( ( 𝑧  ∘f   +  𝑤 )  ∘f   ↑  𝐺 ) )  =  ( ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 265 | 218 264 | oveq12d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) )  ·  ( 𝑇  Σg  ( ( 𝑧  ∘f   +  𝑤 )  ∘f   ↑  𝐺 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ·  ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) )  ·  ( ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 266 | 55 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝑇  ∈  CMnd ) | 
						
							| 267 | 63 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) | 
						
							| 268 | 267 208 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ∈  𝐶 ) | 
						
							| 269 | 267 212 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) )  ∈  𝐶 ) | 
						
							| 270 | 4 47 6 254 220 227 | psrbagev2 | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) )  ∈  𝐶 ) | 
						
							| 271 | 270 | adantrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) )  ∈  𝐶 ) | 
						
							| 272 | 4 47 6 254 257 227 | psrbagev2 | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) )  →  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) )  ∈  𝐶 ) | 
						
							| 273 | 272 | adantrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) )  ∈  𝐶 ) | 
						
							| 274 | 47 216 | cmn4 | ⊢ ( ( 𝑇  ∈  CMnd  ∧  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ∈  𝐶  ∧  ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) )  ∈  𝐶 )  ∧  ( ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) )  ∈  𝐶  ∧  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) )  ∈  𝐶 ) )  →  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ·  ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) )  ·  ( ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) )  =  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ·  ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) ) )  ·  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 275 | 266 268 269 271 273 274 | syl122anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ·  ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) )  ·  ( ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) )  =  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ·  ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) ) )  ·  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 276 | 265 275 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) )  ·  ( 𝑇  Σg  ( ( 𝑧  ∘f   +  𝑤 )  ∘f   ↑  𝐺 ) ) )  =  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ·  ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) ) )  ·  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 277 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 278 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝑅  ∈  CRing ) | 
						
							| 279 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝑆  ∈  CRing ) | 
						
							| 280 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 281 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 282 | 4 | psrbagaddcl | ⊢ ( ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  →  ( 𝑧  ∘f   +  𝑤 )  ∈  𝐷 ) | 
						
							| 283 | 282 | ad2antll | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝑧  ∘f   +  𝑤 )  ∈  𝐷 ) | 
						
							| 284 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 285 | 26 214 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑦 ‘ 𝑤 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 286 | 284 208 212 285 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 287 | 1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 283 286 | evlslem3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝐸 ‘ ( 𝑣  ∈  𝐷  ↦  if ( 𝑣  =  ( 𝑧  ∘f   +  𝑤 ) ,  ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) )  ·  ( 𝑇  Σg  ( ( 𝑧  ∘f   +  𝑤 )  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 288 | 1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 207 208 | evlslem3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝐸 ‘ ( 𝑣  ∈  𝐷  ↦  if ( 𝑣  =  𝑧 ,  ( 𝑥 ‘ 𝑧 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ·  ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 289 | 1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 211 212 | evlslem3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝐸 ‘ ( 𝑣  ∈  𝐷  ↦  if ( 𝑣  =  𝑤 ,  ( 𝑦 ‘ 𝑤 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 290 | 288 289 | oveq12d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( ( 𝐸 ‘ ( 𝑣  ∈  𝐷  ↦  if ( 𝑣  =  𝑧 ,  ( 𝑥 ‘ 𝑧 ) ,  ( 0g ‘ 𝑅 ) ) ) )  ·  ( 𝐸 ‘ ( 𝑣  ∈  𝐷  ↦  if ( 𝑣  =  𝑤 ,  ( 𝑦 ‘ 𝑤 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) )  ·  ( 𝑇  Σg  ( 𝑧  ∘f   ↑  𝐺 ) ) )  ·  ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) )  ·  ( 𝑇  Σg  ( 𝑤  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 291 | 276 287 290 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐷  ∧  𝑤  ∈  𝐷 ) ) )  →  ( 𝐸 ‘ ( 𝑣  ∈  𝐷  ↦  if ( 𝑣  =  ( 𝑧  ∘f   +  𝑤 ) ,  ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( ( 𝐸 ‘ ( 𝑣  ∈  𝐷  ↦  if ( 𝑣  =  𝑧 ,  ( 𝑥 ‘ 𝑧 ) ,  ( 0g ‘ 𝑅 ) ) ) )  ·  ( 𝐸 ‘ ( 𝑣  ∈  𝐷  ↦  if ( 𝑣  =  𝑤 ,  ( 𝑦 ‘ 𝑤 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 292 | 1 2 7 25 4 10 11 12 200 291 | evlslem2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( ( 𝐸 ‘ 𝑥 )  ·  ( 𝐸 ‘ 𝑦 ) ) ) | 
						
							| 293 | 2 16 17 18 7 20 21 87 292 3 88 89 109 199 | isrhmd | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑃  RingHom  𝑆 ) ) | 
						
							| 294 |  | ovex | ⊢ ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  ∈  V | 
						
							| 295 | 294 9 | fnmpti | ⊢ 𝐸  Fn  𝐵 | 
						
							| 296 | 295 | a1i | ⊢ ( 𝜑  →  𝐸  Fn  𝐵 ) | 
						
							| 297 | 26 2 | rhmf | ⊢ ( 𝐴  ∈  ( 𝑅  RingHom  𝑃 )  →  𝐴 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) | 
						
							| 298 | 81 297 | syl | ⊢ ( 𝜑  →  𝐴 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) | 
						
							| 299 | 298 | ffnd | ⊢ ( 𝜑  →  𝐴  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 300 | 298 | frnd | ⊢ ( 𝜑  →  ran  𝐴  ⊆  𝐵 ) | 
						
							| 301 |  | fnco | ⊢ ( ( 𝐸  Fn  𝐵  ∧  𝐴  Fn  ( Base ‘ 𝑅 )  ∧  ran  𝐴  ⊆  𝐵 )  →  ( 𝐸  ∘  𝐴 )  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 302 | 296 299 300 301 | syl3anc | ⊢ ( 𝜑  →  ( 𝐸  ∘  𝐴 )  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 303 | 63 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 304 |  | fvco2 | ⊢ ( ( 𝐴  Fn  ( Base ‘ 𝑅 )  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝐸  ∘  𝐴 ) ‘ 𝑥 )  =  ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) ) | 
						
							| 305 | 299 304 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝐸  ∘  𝐴 ) ‘ 𝑥 )  =  ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) ) | 
						
							| 306 | 305 68 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝐸  ∘  𝐴 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 307 | 302 303 306 | eqfnfvd | ⊢ ( 𝜑  →  ( 𝐸  ∘  𝐴 )  =  𝐹 ) | 
						
							| 308 | 1 8 2 10 19 | mvrf2 | ⊢ ( 𝜑  →  𝑉 : 𝐼 ⟶ 𝐵 ) | 
						
							| 309 | 308 | ffnd | ⊢ ( 𝜑  →  𝑉  Fn  𝐼 ) | 
						
							| 310 | 308 | frnd | ⊢ ( 𝜑  →  ran  𝑉  ⊆  𝐵 ) | 
						
							| 311 |  | fnco | ⊢ ( ( 𝐸  Fn  𝐵  ∧  𝑉  Fn  𝐼  ∧  ran  𝑉  ⊆  𝐵 )  →  ( 𝐸  ∘  𝑉 )  Fn  𝐼 ) | 
						
							| 312 | 296 309 310 311 | syl3anc | ⊢ ( 𝜑  →  ( 𝐸  ∘  𝑉 )  Fn  𝐼 ) | 
						
							| 313 |  | fvco2 | ⊢ ( ( 𝑉  Fn  𝐼  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐸  ∘  𝑉 ) ‘ 𝑥 )  =  ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) ) ) | 
						
							| 314 | 309 313 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐸  ∘  𝑉 ) ‘ 𝑥 )  =  ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) ) ) | 
						
							| 315 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 316 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  ∈  CRing ) | 
						
							| 317 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑥  ∈  𝐼 ) | 
						
							| 318 | 8 4 25 70 315 316 317 | mvrval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑉 ‘ 𝑥 )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 319 | 318 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) )  =  ( 𝐸 ‘ ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 320 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑆  ∈  CRing ) | 
						
							| 321 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 322 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 323 | 4 | psrbagsn | ⊢ ( 𝐼  ∈  𝑊  →  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∈  𝐷 ) | 
						
							| 324 | 10 323 | syl | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∈  𝐷 ) | 
						
							| 325 | 324 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∈  𝐷 ) | 
						
							| 326 | 72 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 327 | 1 2 3 26 4 5 6 7 8 9 315 316 320 321 322 25 325 326 | evlslem3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐸 ‘ ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  ·  ( 𝑇  Σg  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 328 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 329 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 330 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 331 | 329 330 | ifcli | ⊢ if ( 𝑧  =  𝑥 ,  1 ,  0 )  ∈  ℕ0 | 
						
							| 332 | 331 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  →  if ( 𝑧  =  𝑥 ,  1 ,  0 )  ∈  ℕ0 ) | 
						
							| 333 | 14 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑧 )  ∈  𝐶 ) | 
						
							| 334 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) ) ) | 
						
							| 335 | 14 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑧  ∈  𝐼  ↦  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 336 | 10 332 333 334 335 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∘f   ↑  𝐺 )  =  ( 𝑧  ∈  𝐼  ↦  ( if ( 𝑧  =  𝑥 ,  1 ,  0 )  ↑  ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 337 |  | oveq1 | ⊢ ( 1  =  if ( 𝑧  =  𝑥 ,  1 ,  0 )  →  ( 1  ↑  ( 𝐺 ‘ 𝑧 ) )  =  ( if ( 𝑧  =  𝑥 ,  1 ,  0 )  ↑  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 338 | 337 | eqeq1d | ⊢ ( 1  =  if ( 𝑧  =  𝑥 ,  1 ,  0 )  →  ( ( 1  ↑  ( 𝐺 ‘ 𝑧 ) )  =  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) )  ↔  ( if ( 𝑧  =  𝑥 ,  1 ,  0 )  ↑  ( 𝐺 ‘ 𝑧 ) )  =  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) ) | 
						
							| 339 |  | oveq1 | ⊢ ( 0  =  if ( 𝑧  =  𝑥 ,  1 ,  0 )  →  ( 0  ↑  ( 𝐺 ‘ 𝑧 ) )  =  ( if ( 𝑧  =  𝑥 ,  1 ,  0 )  ↑  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 340 | 339 | eqeq1d | ⊢ ( 0  =  if ( 𝑧  =  𝑥 ,  1 ,  0 )  →  ( ( 0  ↑  ( 𝐺 ‘ 𝑧 ) )  =  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) )  ↔  ( if ( 𝑧  =  𝑥 ,  1 ,  0 )  ↑  ( 𝐺 ‘ 𝑧 ) )  =  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) ) | 
						
							| 341 | 333 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  ∧  𝑧  =  𝑥 )  →  ( 𝐺 ‘ 𝑧 )  ∈  𝐶 ) | 
						
							| 342 | 47 6 | mulg1 | ⊢ ( ( 𝐺 ‘ 𝑧 )  ∈  𝐶  →  ( 1  ↑  ( 𝐺 ‘ 𝑧 ) )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 343 | 341 342 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  ∧  𝑧  =  𝑥 )  →  ( 1  ↑  ( 𝐺 ‘ 𝑧 ) )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 344 |  | iftrue | ⊢ ( 𝑧  =  𝑥  →  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 345 | 344 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  ∧  𝑧  =  𝑥 )  →  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 346 | 343 345 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  ∧  𝑧  =  𝑥 )  →  ( 1  ↑  ( 𝐺 ‘ 𝑧 ) )  =  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 347 | 47 48 6 | mulg0 | ⊢ ( ( 𝐺 ‘ 𝑧 )  ∈  𝐶  →  ( 0  ↑  ( 𝐺 ‘ 𝑧 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 348 | 333 347 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  →  ( 0  ↑  ( 𝐺 ‘ 𝑧 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 349 | 348 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  ∧  ¬  𝑧  =  𝑥 )  →  ( 0  ↑  ( 𝐺 ‘ 𝑧 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 350 |  | iffalse | ⊢ ( ¬  𝑧  =  𝑥  →  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 351 | 350 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  ∧  ¬  𝑧  =  𝑥 )  →  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 352 | 349 351 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  ∧  ¬  𝑧  =  𝑥 )  →  ( 0  ↑  ( 𝐺 ‘ 𝑧 ) )  =  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 353 | 338 340 346 352 | ifbothda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐼 )  →  ( if ( 𝑧  =  𝑥 ,  1 ,  0 )  ↑  ( 𝐺 ‘ 𝑧 ) )  =  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 354 | 353 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝐼  ↦  ( if ( 𝑧  =  𝑥 ,  1 ,  0 )  ↑  ( 𝐺 ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) ) | 
						
							| 355 | 336 354 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∘f   ↑  𝐺 )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) ) | 
						
							| 356 | 355 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∘f   ↑  𝐺 )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) ) | 
						
							| 357 | 356 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑇  Σg  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∘f   ↑  𝐺 ) )  =  ( 𝑇  Σg  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) ) ) | 
						
							| 358 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑇  ∈  Mnd ) | 
						
							| 359 | 333 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑧 )  ∈  𝐶 ) | 
						
							| 360 | 3 17 | ringidcl | ⊢ ( 𝑆  ∈  Ring  →  ( 1r ‘ 𝑆 )  ∈  𝐶 ) | 
						
							| 361 | 21 360 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  ∈  𝐶 ) | 
						
							| 362 | 361 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  →  ( 1r ‘ 𝑆 )  ∈  𝐶 ) | 
						
							| 363 | 359 362 | ifcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  𝑧  ∈  𝐼 )  →  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) )  ∈  𝐶 ) | 
						
							| 364 | 363 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) : 𝐼 ⟶ 𝐶 ) | 
						
							| 365 |  | eldifsnneq | ⊢ ( 𝑧  ∈  ( 𝐼  ∖  { 𝑥 } )  →  ¬  𝑧  =  𝑥 ) | 
						
							| 366 | 365 350 | syl | ⊢ ( 𝑧  ∈  ( 𝐼  ∖  { 𝑥 } )  →  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 367 | 366 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  𝑧  ∈  ( 𝐼  ∖  { 𝑥 } ) )  →  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 368 | 367 315 | suppss2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) )  supp  ( 1r ‘ 𝑆 ) )  ⊆  { 𝑥 } ) | 
						
							| 369 | 47 48 358 315 317 364 368 | gsumpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑇  Σg  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) )  =  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) ‘ 𝑥 ) ) | 
						
							| 370 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 371 | 344 370 | eqtrd | ⊢ ( 𝑧  =  𝑥  →  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 372 |  | eqid | ⊢ ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) )  =  ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) | 
						
							| 373 |  | fvex | ⊢ ( 𝐺 ‘ 𝑥 )  ∈  V | 
						
							| 374 | 371 372 373 | fvmpt | ⊢ ( 𝑥  ∈  𝐼  →  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 375 | 374 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  ( 𝐺 ‘ 𝑧 ) ,  ( 1r ‘ 𝑆 ) ) ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 376 | 357 369 375 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑇  Σg  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∘f   ↑  𝐺 ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 377 | 328 376 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  ·  ( 𝑇  Σg  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∘f   ↑  𝐺 ) ) )  =  ( ( 1r ‘ 𝑆 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 378 | 3 7 17 | ringlidm | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( 𝐺 ‘ 𝑥 )  ∈  𝐶 )  →  ( ( 1r ‘ 𝑆 )  ·  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 379 | 21 46 378 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 1r ‘ 𝑆 )  ·  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 380 | 377 379 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  ·  ( 𝑇  Σg  ( ( 𝑧  ∈  𝐼  ↦  if ( 𝑧  =  𝑥 ,  1 ,  0 ) )  ∘f   ↑  𝐺 ) ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 381 | 319 327 380 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 382 | 314 381 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐸  ∘  𝑉 ) ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 383 | 312 246 382 | eqfnfvd | ⊢ ( 𝜑  →  ( 𝐸  ∘  𝑉 )  =  𝐺 ) | 
						
							| 384 | 293 307 383 | 3jca | ⊢ ( 𝜑  →  ( 𝐸  ∈  ( 𝑃  RingHom  𝑆 )  ∧  ( 𝐸  ∘  𝐴 )  =  𝐹  ∧  ( 𝐸  ∘  𝑉 )  =  𝐺 ) ) |