| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlslem2.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | evlslem2.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | evlslem2.m | ⊢  ·   =  ( .r ‘ 𝑆 ) | 
						
							| 4 |  | evlslem2.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | evlslem2.d | ⊢ 𝐷  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 6 |  | evlslem2.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 7 |  | evlslem2.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 8 |  | evlslem2.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 9 |  | evlslem2.e1 | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑃  GrpHom  𝑆 ) ) | 
						
							| 10 |  | evlslem2.e2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) ) )  →  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  ( 𝑗  ∘f   +  𝑖 ) ,  ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) ,   0  ) ) )  =  ( ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  ·  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 13 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 14 | 5 13 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐷  ∈  V ) | 
						
							| 16 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 17 | 7 16 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 18 | 1 6 17 | mplringd | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑃  ∈  Ring ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 21 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑗  ∈  𝐷 )  →  𝐼  ∈  𝑊 ) | 
						
							| 22 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑗  ∈  𝐷 )  →  𝑅  ∈  Ring ) | 
						
							| 23 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 24 | 1 20 2 5 23 | mplelf | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 25 | 24 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑗  ∈  𝐷 )  →  ( 𝑥 ‘ 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑗  ∈  𝐷 )  →  𝑗  ∈  𝐷 ) | 
						
							| 27 | 1 5 4 20 21 22 2 25 26 | mplmon2cl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑗  ∈  𝐷 )  →  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) )  ∈  𝐵 ) | 
						
							| 28 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝐷 )  →  𝐼  ∈  𝑊 ) | 
						
							| 29 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝐷 )  →  𝑅  ∈  Ring ) | 
						
							| 30 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 31 | 1 20 2 5 30 | mplelf | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 32 | 31 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝐷 )  →  ( 𝑦 ‘ 𝑖 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝐷 )  →  𝑖  ∈  𝐷 ) | 
						
							| 34 | 1 5 4 20 28 29 2 32 33 | mplmon2cl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝐷 )  →  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) )  ∈  𝐵 ) | 
						
							| 35 | 14 | mptex | ⊢ ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  ∈  V | 
						
							| 36 |  | funmpt | ⊢ Fun  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) ) | 
						
							| 37 |  | fvex | ⊢ ( 0g ‘ 𝑃 )  ∈  V | 
						
							| 38 | 35 36 37 | 3pm3.2i | ⊢ ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  ∈  V  ∧  Fun  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V ) | 
						
							| 39 | 38 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  ∈  V  ∧  Fun  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 41 | 1 2 4 40 | mplelsfi | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑦  finSupp   0  ) | 
						
							| 42 | 41 | fsuppimpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  supp   0  )  ∈  Fin ) | 
						
							| 43 | 1 20 2 5 40 | mplelf | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 44 |  | ssidd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑦  supp   0  )  ⊆  ( 𝑦  supp   0  ) ) | 
						
							| 45 | 14 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝐷  ∈  V ) | 
						
							| 46 | 4 | fvexi | ⊢  0   ∈  V | 
						
							| 47 | 46 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →   0   ∈  V ) | 
						
							| 48 | 43 44 45 47 | suppssr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑗  ∈  ( 𝐷  ∖  ( 𝑦  supp   0  ) ) )  →  ( 𝑦 ‘ 𝑗 )  =   0  ) | 
						
							| 49 | 48 | ifeq1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑗  ∈  ( 𝐷  ∖  ( 𝑦  supp   0  ) ) )  →  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  )  =  if ( 𝑘  =  𝑗 ,   0  ,   0  ) ) | 
						
							| 50 |  | ifid | ⊢ if ( 𝑘  =  𝑗 ,   0  ,   0  )  =   0 | 
						
							| 51 | 49 50 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑗  ∈  ( 𝐷  ∖  ( 𝑦  supp   0  ) ) )  →  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  )  =   0  ) | 
						
							| 52 | 51 | mpteq2dv | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑗  ∈  ( 𝐷  ∖  ( 𝑦  supp   0  ) ) )  →  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) )  =  ( 𝑘  ∈  𝐷  ↦   0  ) ) | 
						
							| 53 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 54 | 17 53 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 55 | 1 5 4 12 6 54 | mpl0 | ⊢ ( 𝜑  →  ( 0g ‘ 𝑃 )  =  ( 𝐷  ×  {  0  } ) ) | 
						
							| 56 |  | fconstmpt | ⊢ ( 𝐷  ×  {  0  } )  =  ( 𝑘  ∈  𝐷  ↦   0  ) | 
						
							| 57 | 55 56 | eqtrdi | ⊢ ( 𝜑  →  ( 0g ‘ 𝑃 )  =  ( 𝑘  ∈  𝐷  ↦   0  ) ) | 
						
							| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑗  ∈  ( 𝐷  ∖  ( 𝑦  supp   0  ) ) )  →  ( 0g ‘ 𝑃 )  =  ( 𝑘  ∈  𝐷  ↦   0  ) ) | 
						
							| 59 | 52 58 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  ∧  𝑗  ∈  ( 𝐷  ∖  ( 𝑦  supp   0  ) ) )  →  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 60 | 59 45 | suppss2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ⊆  ( 𝑦  supp   0  ) ) | 
						
							| 61 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  ∈  V  ∧  Fun  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V )  ∧  ( ( 𝑦  supp   0  )  ∈  Fin  ∧  ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ⊆  ( 𝑦  supp   0  ) ) )  →  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 62 | 39 42 60 61 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 63 | 62 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐵 ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 64 |  | fveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦 ‘ 𝑗 )  =  ( 𝑥 ‘ 𝑗 ) ) | 
						
							| 65 | 64 | ifeq1d | ⊢ ( 𝑦  =  𝑥  →  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  )  =  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) | 
						
							| 66 | 65 | mpteq2dv | ⊢ ( 𝑦  =  𝑥  →  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) )  =  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) | 
						
							| 67 | 66 | mpteq2dv | ⊢ ( 𝑦  =  𝑥  →  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  =  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) | 
						
							| 68 | 67 | breq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 )  ↔  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 69 | 68 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 )  ↔  ∀ 𝑥  ∈  𝐵 ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 70 | 63 69 | sylib | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 71 | 70 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 72 | 71 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 73 |  | equequ2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑘  =  𝑖  ↔  𝑘  =  𝑗 ) ) | 
						
							| 74 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑦 ‘ 𝑖 )  =  ( 𝑦 ‘ 𝑗 ) ) | 
						
							| 75 | 73 74 | ifbieq1d | ⊢ ( 𝑖  =  𝑗  →  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  )  =  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) | 
						
							| 76 | 75 | mpteq2dv | ⊢ ( 𝑖  =  𝑗  →  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) )  =  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) ) | 
						
							| 77 | 76 | cbvmptv | ⊢ ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  =  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) ) | 
						
							| 78 | 62 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑦 ‘ 𝑗 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 79 | 77 78 | eqbrtrid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 80 | 2 11 12 15 15 19 27 34 72 79 | gsumdixp | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑃  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) )  =  ( 𝑃  Σg  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ ( ( 𝑃  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) )  =  ( 𝐸 ‘ ( 𝑃  Σg  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 82 |  | ringcmn | ⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  CMnd ) | 
						
							| 83 | 18 82 | syl | ⊢ ( 𝜑  →  𝑃  ∈  CMnd ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑃  ∈  CMnd ) | 
						
							| 85 |  | crngring | ⊢ ( 𝑆  ∈  CRing  →  𝑆  ∈  Ring ) | 
						
							| 86 | 8 85 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑆  ∈  Ring ) | 
						
							| 88 |  | ringmnd | ⊢ ( 𝑆  ∈  Ring  →  𝑆  ∈  Mnd ) | 
						
							| 89 | 87 88 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑆  ∈  Mnd ) | 
						
							| 90 | 14 14 | xpex | ⊢ ( 𝐷  ×  𝐷 )  ∈  V | 
						
							| 91 | 90 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐷  ×  𝐷 )  ∈  V ) | 
						
							| 92 |  | ghmmhm | ⊢ ( 𝐸  ∈  ( 𝑃  GrpHom  𝑆 )  →  𝐸  ∈  ( 𝑃  MndHom  𝑆 ) ) | 
						
							| 93 | 9 92 | syl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑃  MndHom  𝑆 ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐸  ∈  ( 𝑃  MndHom  𝑆 ) ) | 
						
							| 95 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  𝑃  ∈  Ring ) | 
						
							| 96 | 27 | adantrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) )  ∈  𝐵 ) | 
						
							| 97 | 34 | adantrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) )  ∈  𝐵 ) | 
						
							| 98 | 2 11 | ringcl | ⊢ ( ( 𝑃  ∈  Ring  ∧  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) )  ∈  𝐵  ∧  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) )  ∈  𝐵 )  →  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 99 | 95 96 97 98 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 100 | 99 | ralrimivva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∀ 𝑗  ∈  𝐷 ∀ 𝑖  ∈  𝐷 ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  ∈  𝐵 ) | 
						
							| 101 |  | eqid | ⊢ ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  =  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) | 
						
							| 102 | 101 | fmpo | ⊢ ( ∀ 𝑗  ∈  𝐷 ∀ 𝑖  ∈  𝐷 ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  ∈  𝐵  ↔  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) : ( 𝐷  ×  𝐷 ) ⟶ 𝐵 ) | 
						
							| 103 | 100 102 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) : ( 𝐷  ×  𝐷 ) ⟶ 𝐵 ) | 
						
							| 104 | 14 14 | mpoex | ⊢ ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∈  V | 
						
							| 105 | 101 | mpofun | ⊢ Fun  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) | 
						
							| 106 | 104 105 37 | 3pm3.2i | ⊢ ( ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V ) | 
						
							| 107 | 106 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V ) ) | 
						
							| 108 | 72 | fsuppimpd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ∈  Fin ) | 
						
							| 109 | 79 | fsuppimpd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ∈  Fin ) | 
						
							| 110 |  | xpfi | ⊢ ( ( ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ∈  Fin  ∧  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ∈  Fin )  →  ( ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ×  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) )  ∈  Fin ) | 
						
							| 111 | 108 109 110 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ×  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) )  ∈  Fin ) | 
						
							| 112 | 2 12 11 19 27 34 15 15 | evlslem4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  supp  ( 0g ‘ 𝑃 ) )  ⊆  ( ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ×  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 113 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑃 )  ∈  V )  ∧  ( ( ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ×  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) )  ∈  Fin  ∧  ( ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  supp  ( 0g ‘ 𝑃 ) )  ⊆  ( ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ×  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) ) ) )  →  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 114 | 107 111 112 113 | syl12anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 115 | 2 12 84 89 91 94 103 114 | gsummhm | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) )  =  ( 𝐸 ‘ ( 𝑃  Σg  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 116 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 117 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  𝑅  ∈  CRing ) | 
						
							| 118 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 119 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  𝑗  ∈  𝐷 ) | 
						
							| 120 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  𝑖  ∈  𝐷 ) | 
						
							| 121 | 25 | adantrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  ( 𝑥 ‘ 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 122 | 32 | adantrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  ( 𝑦 ‘ 𝑖 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 123 | 1 5 4 20 116 117 11 118 119 120 121 122 | mplmon2mul | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  =  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  ( 𝑗  ∘f   +  𝑖 ) ,  ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) ,   0  ) ) ) | 
						
							| 124 | 123 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  ( 𝐸 ‘ ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  =  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  ( 𝑗  ∘f   +  𝑖 ) ,  ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) ,   0  ) ) ) ) | 
						
							| 125 | 10 | anassrs | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  ( 𝑗  ∘f   +  𝑖 ) ,  ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) ,   0  ) ) )  =  ( ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  ·  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) | 
						
							| 126 | 124 125 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 ) )  →  ( 𝐸 ‘ ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  =  ( ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  ·  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) | 
						
							| 127 | 126 | 3impb | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑗  ∈  𝐷  ∧  𝑖  ∈  𝐷 )  →  ( 𝐸 ‘ ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  =  ( ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  ·  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) | 
						
							| 128 | 127 | mpoeq3dva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) )  =  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  ·  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) | 
						
							| 129 | 128 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  ·  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 130 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  =  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) | 
						
							| 131 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 132 | 2 131 | ghmf | ⊢ ( 𝐸  ∈  ( 𝑃  GrpHom  𝑆 )  →  𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 133 | 9 132 | syl | ⊢ ( 𝜑  →  𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 134 | 133 | feqmptd | ⊢ ( 𝜑  →  𝐸  =  ( 𝑧  ∈  𝐵  ↦  ( 𝐸 ‘ 𝑧 ) ) ) | 
						
							| 135 | 134 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐸  =  ( 𝑧  ∈  𝐵  ↦  ( 𝐸 ‘ 𝑧 ) ) ) | 
						
							| 136 |  | fveq2 | ⊢ ( 𝑧  =  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  →  ( 𝐸 ‘ 𝑧 )  =  ( 𝐸 ‘ ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) | 
						
							| 137 | 99 130 135 136 | fmpoco | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸  ∘  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) )  =  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) | 
						
							| 138 | 137 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 139 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  =  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) | 
						
							| 140 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) )  →  ( 𝐸 ‘ 𝑧 )  =  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) | 
						
							| 141 | 27 139 135 140 | fmptco | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸  ∘  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  =  ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ) | 
						
							| 142 | 141 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ) ) | 
						
							| 143 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  =  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) | 
						
							| 144 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) )  →  ( 𝐸 ‘ 𝑧 )  =  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) | 
						
							| 145 | 34 143 135 144 | fmptco | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸  ∘  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  =  ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) | 
						
							| 146 | 145 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) | 
						
							| 147 | 142 146 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) )  ·  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) )  =  ( ( 𝑆  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) )  ·  ( 𝑆  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 148 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 149 | 133 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑗  ∈  𝐷 )  →  𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 150 | 149 27 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑗  ∈  𝐷 )  →  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 151 | 133 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝐷 )  →  𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 152 | 151 34 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑖  ∈  𝐷 )  →  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 153 | 14 | mptex | ⊢ ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  ∈  V | 
						
							| 154 |  | funmpt | ⊢ Fun  ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) | 
						
							| 155 |  | fvex | ⊢ ( 0g ‘ 𝑆 )  ∈  V | 
						
							| 156 | 153 154 155 | 3pm3.2i | ⊢ ( ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑆 )  ∈  V ) | 
						
							| 157 | 156 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑆 )  ∈  V ) ) | 
						
							| 158 |  | ssidd | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ⊆  ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 159 | 12 148 | ghmid | ⊢ ( 𝐸  ∈  ( 𝑃  GrpHom  𝑆 )  →  ( 𝐸 ‘ ( 0g ‘ 𝑃 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 160 | 9 159 | syl | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 0g ‘ 𝑃 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 161 | 14 | mptex | ⊢ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) )  ∈  V | 
						
							| 162 | 161 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐷 )  →  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) )  ∈  V ) | 
						
							| 163 | 37 | a1i | ⊢ ( 𝜑  →  ( 0g ‘ 𝑃 )  ∈  V ) | 
						
							| 164 | 158 160 162 163 | suppssfv | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 165 | 164 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 166 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑆 )  ∈  V )  ∧  ( ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ∈  Fin  ∧  ( ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  ( ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) ) )  →  ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) | 
						
							| 167 | 157 108 165 166 | syl12anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) | 
						
							| 168 | 14 | mptex | ⊢ ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∈  V | 
						
							| 169 |  | funmpt | ⊢ Fun  ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) | 
						
							| 170 | 168 169 155 | 3pm3.2i | ⊢ ( ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑆 )  ∈  V ) | 
						
							| 171 | 170 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑆 )  ∈  V ) ) | 
						
							| 172 |  | ssidd | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ⊆  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 173 | 14 | mptex | ⊢ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) )  ∈  V | 
						
							| 174 | 173 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐷 )  →  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) )  ∈  V ) | 
						
							| 175 | 172 160 174 163 | suppssfv | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 176 | 175 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 177 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∈  V  ∧  Fun  ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  ∧  ( 0g ‘ 𝑆 )  ∈  V )  ∧  ( ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) )  ∈  Fin  ∧  ( ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  ( ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) )  supp  ( 0g ‘ 𝑃 ) ) ) )  →  ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) | 
						
							| 178 | 171 109 176 177 | syl12anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) | 
						
							| 179 | 131 3 148 15 15 87 150 152 167 178 | gsumdixp | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑆  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) )  ·  ( 𝑆  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  ·  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 180 | 147 179 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) )  ·  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) )  ·  ( 𝐸 ‘ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 181 | 129 138 180 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷 ,  𝑖  ∈  𝐷  ↦  ( ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ( .r ‘ 𝑃 ) ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) )  =  ( ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) )  ·  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 182 | 81 115 181 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ ( ( 𝑃  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) )  =  ( ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) )  ·  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 183 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 184 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑅  ∈  Ring ) | 
						
							| 185 | 1 5 4 2 183 184 23 | mplcoe4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  =  ( 𝑃  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ) | 
						
							| 186 | 1 5 4 2 183 184 30 | mplcoe4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  =  ( 𝑃  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) | 
						
							| 187 | 185 186 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  =  ( ( 𝑃  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) | 
						
							| 188 | 187 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( 𝐸 ‘ ( ( 𝑃  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 189 | 185 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ 𝑥 )  =  ( 𝐸 ‘ ( 𝑃  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ) ) | 
						
							| 190 | 27 | fmpttd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) : 𝐷 ⟶ 𝐵 ) | 
						
							| 191 | 2 12 84 89 15 94 190 72 | gsummhm | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) )  =  ( 𝐸 ‘ ( 𝑃  Σg  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ) ) | 
						
							| 192 | 189 191 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ 𝑥 )  =  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) ) ) | 
						
							| 193 | 186 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ ( 𝑃  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) | 
						
							| 194 | 34 | fmpttd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) : 𝐷 ⟶ 𝐵 ) | 
						
							| 195 | 2 12 84 89 15 94 194 79 | gsummhm | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) )  =  ( 𝐸 ‘ ( 𝑃  Σg  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) | 
						
							| 196 | 193 195 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ 𝑦 )  =  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) | 
						
							| 197 | 192 196 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐸 ‘ 𝑥 )  ·  ( 𝐸 ‘ 𝑦 ) )  =  ( ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑗  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑗 ,  ( 𝑥 ‘ 𝑗 ) ,   0  ) ) ) ) )  ·  ( 𝑆  Σg  ( 𝐸  ∘  ( 𝑖  ∈  𝐷  ↦  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  =  𝑖 ,  ( 𝑦 ‘ 𝑖 ) ,   0  ) ) ) ) ) ) ) | 
						
							| 198 | 182 188 197 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( ( 𝐸 ‘ 𝑥 )  ·  ( 𝐸 ‘ 𝑦 ) ) ) |