Step |
Hyp |
Ref |
Expression |
1 |
|
evlslem2.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
evlslem2.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
evlslem2.m |
⊢ · = ( .r ‘ 𝑆 ) |
4 |
|
evlslem2.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
evlslem2.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
6 |
|
evlslem2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
7 |
|
evlslem2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
8 |
|
evlslem2.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
evlslem2.e1 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) ) |
10 |
|
evlslem2.e2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
13 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
14 |
5 13
|
rabex2 |
⊢ 𝐷 ∈ V |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ V ) |
16 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
17 |
7 16
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
18 |
1
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
19 |
6 17 18
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Ring ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
22 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
23 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
24 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
25 |
1 21 2 5 24
|
mplelf |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
26 |
25
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝑥 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝑗 ∈ 𝐷 ) |
28 |
1 5 4 21 22 23 2 26 27
|
mplmon2cl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ 𝐵 ) |
29 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
30 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
31 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
32 |
1 21 2 5 31
|
mplelf |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
33 |
32
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( Base ‘ 𝑅 ) ) |
34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝑖 ∈ 𝐷 ) |
35 |
1 5 4 21 29 30 2 33 34
|
mplmon2cl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ 𝐵 ) |
36 |
14
|
mptex |
⊢ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V |
37 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) |
38 |
|
fvex |
⊢ ( 0g ‘ 𝑃 ) ∈ V |
39 |
36 37 38
|
3pm3.2i |
⊢ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
42 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
43 |
1 2 4 41 42
|
mplelsfi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 finSupp 0 ) |
44 |
43
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 supp 0 ) ∈ Fin ) |
45 |
1 21 2 5 41
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
46 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 supp 0 ) ⊆ ( 𝑦 supp 0 ) ) |
47 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ V ) |
48 |
4
|
fvexi |
⊢ 0 ∈ V |
49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 0 ∈ V ) |
50 |
45 46 47 49
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 𝑦 ‘ 𝑗 ) = 0 ) |
51 |
50
|
ifeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) = if ( 𝑘 = 𝑗 , 0 , 0 ) ) |
52 |
|
ifid |
⊢ if ( 𝑘 = 𝑗 , 0 , 0 ) = 0 |
53 |
51 52
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) = 0 ) |
54 |
53
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) ) |
55 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
56 |
17 55
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
57 |
1 5 4 12 6 56
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐷 × { 0 } ) ) |
58 |
|
fconstmpt |
⊢ ( 𝐷 × { 0 } ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) |
59 |
57 58
|
eqtrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 0g ‘ 𝑃 ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) ) |
61 |
54 60
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) = ( 0g ‘ 𝑃 ) ) |
62 |
61 47
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑦 supp 0 ) ) |
63 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑦 supp 0 ) ∈ Fin ∧ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑦 supp 0 ) ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
64 |
40 44 62 63
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
65 |
64
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
66 |
|
fveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ‘ 𝑗 ) = ( 𝑥 ‘ 𝑗 ) ) |
67 |
66
|
ifeq1d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) = if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) |
68 |
67
|
mpteq2dv |
⊢ ( 𝑦 = 𝑥 → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) |
69 |
68
|
mpteq2dv |
⊢ ( 𝑦 = 𝑥 → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) |
70 |
69
|
breq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ↔ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) ) |
71 |
70
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
72 |
65 71
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
73 |
72
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
74 |
73
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
75 |
|
equequ2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑘 = 𝑖 ↔ 𝑘 = 𝑗 ) ) |
76 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑦 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑗 ) ) |
77 |
75 76
|
ifbieq1d |
⊢ ( 𝑖 = 𝑗 → if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) = if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) |
78 |
77
|
mpteq2dv |
⊢ ( 𝑖 = 𝑗 → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) |
79 |
78
|
cbvmptv |
⊢ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) |
80 |
64
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
81 |
79 80
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
82 |
2 11 12 15 15 20 28 35 74 81
|
gsumdixp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
83 |
82
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
84 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
85 |
19 84
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ CMnd ) |
87 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
88 |
8 87
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ Ring ) |
90 |
|
ringmnd |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Mnd ) |
91 |
89 90
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ Mnd ) |
92 |
14 14
|
xpex |
⊢ ( 𝐷 × 𝐷 ) ∈ V |
93 |
92
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐷 × 𝐷 ) ∈ V ) |
94 |
|
ghmmhm |
⊢ ( 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) → 𝐸 ∈ ( 𝑃 MndHom 𝑆 ) ) |
95 |
9 94
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 MndHom 𝑆 ) ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐸 ∈ ( 𝑃 MndHom 𝑆 ) ) |
97 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑃 ∈ Ring ) |
98 |
28
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ 𝐵 ) |
99 |
35
|
adantrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ 𝐵 ) |
100 |
2 11
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ 𝐵 ∧ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ) |
101 |
97 98 99 100
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ) |
102 |
101
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑗 ∈ 𝐷 ∀ 𝑖 ∈ 𝐷 ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ) |
103 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
104 |
103
|
fmpo |
⊢ ( ∀ 𝑗 ∈ 𝐷 ∀ 𝑖 ∈ 𝐷 ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ↔ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) : ( 𝐷 × 𝐷 ) ⟶ 𝐵 ) |
105 |
102 104
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) : ( 𝐷 × 𝐷 ) ⟶ 𝐵 ) |
106 |
14 14
|
mpoex |
⊢ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V |
107 |
103
|
mpofun |
⊢ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
108 |
106 107 38
|
3pm3.2i |
⊢ ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
110 |
74
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ) |
111 |
81
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ) |
112 |
|
xpfi |
⊢ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ∧ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ) → ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ∈ Fin ) |
113 |
110 111 112
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ∈ Fin ) |
114 |
2 12 11 20 28 35 15 15
|
evlslem4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) |
115 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ∈ Fin ∧ ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
116 |
109 113 114 115
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
117 |
2 12 86 91 93 96 105 116
|
gsummhm |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
118 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝐼 ∈ 𝑊 ) |
119 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑅 ∈ CRing ) |
120 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
121 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑗 ∈ 𝐷 ) |
122 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑖 ∈ 𝐷 ) |
123 |
26
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑥 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
124 |
33
|
adantrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑦 ‘ 𝑖 ) ∈ ( Base ‘ 𝑅 ) ) |
125 |
1 5 4 21 118 119 11 120 121 122 123 124
|
mplmon2mul |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) |
126 |
125
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) ) |
127 |
10
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
128 |
126 127
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
129 |
128
|
3impb |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) → ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
130 |
129
|
mpoeq3dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
131 |
130
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
132 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
133 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
134 |
2 133
|
ghmf |
⊢ ( 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
135 |
9 134
|
syl |
⊢ ( 𝜑 → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
136 |
135
|
feqmptd |
⊢ ( 𝜑 → 𝐸 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐸 ‘ 𝑧 ) ) ) |
137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐸 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐸 ‘ 𝑧 ) ) ) |
138 |
|
fveq2 |
⊢ ( 𝑧 = ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
139 |
101 132 137 138
|
fmpoco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
140 |
139
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
141 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) |
142 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) |
143 |
28 141 137 142
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) |
144 |
143
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
145 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) = ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
146 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
147 |
35 145 137 146
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
148 |
147
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑆 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
149 |
144 148
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
150 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
151 |
135
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
152 |
151 28
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
153 |
135
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
154 |
153 35
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
155 |
14
|
mptex |
⊢ ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V |
156 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) |
157 |
|
fvex |
⊢ ( 0g ‘ 𝑆 ) ∈ V |
158 |
155 156 157
|
3pm3.2i |
⊢ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) |
159 |
158
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ) |
160 |
|
ssidd |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
161 |
12 150
|
ghmid |
⊢ ( 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) → ( 𝐸 ‘ ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑆 ) ) |
162 |
9 161
|
syl |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑆 ) ) |
163 |
14
|
mptex |
⊢ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ V |
164 |
163
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ V ) |
165 |
38
|
a1i |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ V ) |
166 |
160 162 164 165
|
suppssfv |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
168 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ∧ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ∧ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
169 |
159 110 167 168
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
170 |
14
|
mptex |
⊢ ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V |
171 |
|
funmpt |
⊢ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
172 |
170 171 157
|
3pm3.2i |
⊢ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) |
173 |
172
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ) |
174 |
|
ssidd |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
175 |
14
|
mptex |
⊢ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ V |
176 |
175
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ V ) |
177 |
174 162 176 165
|
suppssfv |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
178 |
177
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
179 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ∧ ( ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ∧ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
180 |
173 111 178 179
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
181 |
133 3 150 15 15 89 152 154 169 180
|
gsumdixp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑆 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
182 |
149 181
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
183 |
131 140 182
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
184 |
83 117 183
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
185 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑊 ) |
186 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
187 |
1 5 4 2 185 186 24
|
mplcoe4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) |
188 |
1 5 4 2 185 186 31
|
mplcoe4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 = ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
189 |
187 188
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
190 |
189
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( 𝐸 ‘ ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
191 |
187
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
192 |
28
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) : 𝐷 ⟶ 𝐵 ) |
193 |
2 12 86 91 15 96 192 74
|
gsummhm |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
194 |
191 193
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑥 ) = ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
195 |
188
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
196 |
35
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) : 𝐷 ⟶ 𝐵 ) |
197 |
2 12 86 91 15 96 196 81
|
gsummhm |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
198 |
195 197
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
199 |
194 198
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐸 ‘ 𝑥 ) · ( 𝐸 ‘ 𝑦 ) ) = ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
200 |
184 190 199
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐸 ‘ 𝑥 ) · ( 𝐸 ‘ 𝑦 ) ) ) |