| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlslem3.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | evlslem3.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | evlslem3.c | ⊢ 𝐶  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | evlslem3.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | evlslem3.d | ⊢ 𝐷  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 6 |  | evlslem3.t | ⊢ 𝑇  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 7 |  | evlslem3.x | ⊢  ↑   =  ( .g ‘ 𝑇 ) | 
						
							| 8 |  | evlslem3.m | ⊢  ·   =  ( .r ‘ 𝑆 ) | 
						
							| 9 |  | evlslem3.v | ⊢ 𝑉  =  ( 𝐼  mVar  𝑅 ) | 
						
							| 10 |  | evlslem3.e | ⊢ 𝐸  =  ( 𝑝  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 11 |  | evlslem3.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 12 |  | evlslem3.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 13 |  | evlslem3.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 14 |  | evlslem3.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 15 |  | evlslem3.g | ⊢ ( 𝜑  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 16 |  | evlslem3.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 17 |  | evlslem3.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 18 |  | evlslem3.q | ⊢ ( 𝜑  →  𝐻  ∈  𝐾 ) | 
						
							| 19 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 20 | 12 19 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 21 | 1 5 16 4 11 20 2 18 17 | mplmon2cl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) )  ∈  𝐵 ) | 
						
							| 22 |  | fveq1 | ⊢ ( 𝑝  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) )  →  ( 𝑝 ‘ 𝑏 )  =  ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝑝  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) )  →  ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  =  ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( 𝑝  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) )  →  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 25 | 24 | mpteq2dv | ⊢ ( 𝑝  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝑝  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) )  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 27 |  | ovex | ⊢ ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  ∈  V | 
						
							| 28 | 26 10 27 | fvmpt | ⊢ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) )  ∈  𝐵  →  ( 𝐸 ‘ ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 29 | 21 28 | syl | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) )  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) | 
						
							| 31 |  | eqeq1 | ⊢ ( 𝑥  =  𝑏  →  ( 𝑥  =  𝐴  ↔  𝑏  =  𝐴 ) ) | 
						
							| 32 | 31 | ifbid | ⊢ ( 𝑥  =  𝑏  →  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  )  =  if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑏  ∈  𝐷 ) | 
						
							| 34 | 16 | fvexi | ⊢  0   ∈  V | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 36 | 18 35 | ifexd | ⊢ ( 𝜑  →  if ( 𝑏  =  𝐴 ,  𝐻 ,   0  )  ∈  V ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  if ( 𝑏  =  𝐴 ,  𝐻 ,   0  )  ∈  V ) | 
						
							| 38 | 30 32 33 37 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 )  =  if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  =  ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 41 | 40 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 43 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 44 |  | crngring | ⊢ ( 𝑆  ∈  CRing  →  𝑆  ∈  Ring ) | 
						
							| 45 | 13 44 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 46 |  | ringmnd | ⊢ ( 𝑆  ∈  Ring  →  𝑆  ∈  Mnd ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Mnd ) | 
						
							| 48 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 49 | 5 48 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 50 | 49 | a1i | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 51 | 45 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑆  ∈  Ring ) | 
						
							| 52 | 4 3 | rhmf | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹 : 𝐾 ⟶ 𝐶 ) | 
						
							| 53 | 14 52 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐾 ⟶ 𝐶 ) | 
						
							| 54 | 4 16 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  𝐾 ) | 
						
							| 55 | 20 54 | syl | ⊢ ( 𝜑  →   0   ∈  𝐾 ) | 
						
							| 56 | 18 55 | ifcld | ⊢ ( 𝜑  →  if ( 𝑏  =  𝐴 ,  𝐻 ,   0  )  ∈  𝐾 ) | 
						
							| 57 | 53 56 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ∈  𝐶 ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ∈  𝐶 ) | 
						
							| 59 | 6 3 | mgpbas | ⊢ 𝐶  =  ( Base ‘ 𝑇 ) | 
						
							| 60 |  | eqid | ⊢ ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 61 | 6 | crngmgp | ⊢ ( 𝑆  ∈  CRing  →  𝑇  ∈  CMnd ) | 
						
							| 62 | 13 61 | syl | ⊢ ( 𝜑  →  𝑇  ∈  CMnd ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑇  ∈  CMnd ) | 
						
							| 64 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝐼  ∈  𝑊 ) | 
						
							| 65 |  | cmnmnd | ⊢ ( 𝑇  ∈  CMnd  →  𝑇  ∈  Mnd ) | 
						
							| 66 | 62 65 | syl | ⊢ ( 𝜑  →  𝑇  ∈  Mnd ) | 
						
							| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  ( 𝑦  ∈  ℕ0  ∧  𝑧  ∈  𝐶 ) )  →  𝑇  ∈  Mnd ) | 
						
							| 68 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  ( 𝑦  ∈  ℕ0  ∧  𝑧  ∈  𝐶 ) )  →  𝑦  ∈  ℕ0 ) | 
						
							| 69 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  ( 𝑦  ∈  ℕ0  ∧  𝑧  ∈  𝐶 ) )  →  𝑧  ∈  𝐶 ) | 
						
							| 70 | 59 7 67 68 69 | mulgnn0cld | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  ( 𝑦  ∈  ℕ0  ∧  𝑧  ∈  𝐶 ) )  →  ( 𝑦  ↑  𝑧 )  ∈  𝐶 ) | 
						
							| 71 | 5 | psrbagf | ⊢ ( 𝑏  ∈  𝐷  →  𝑏 : 𝐼 ⟶ ℕ0 ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑏 : 𝐼 ⟶ ℕ0 ) | 
						
							| 73 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 74 |  | inidm | ⊢ ( 𝐼  ∩  𝐼 )  =  𝐼 | 
						
							| 75 | 70 72 73 64 64 74 | off | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑏  ∘f   ↑  𝐺 ) : 𝐼 ⟶ 𝐶 ) | 
						
							| 76 |  | ovex | ⊢ ( 𝑏  ∘f   ↑  𝐺 )  ∈  V | 
						
							| 77 | 76 | a1i | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑏  ∘f   ↑  𝐺 )  ∈  V ) | 
						
							| 78 | 75 | ffund | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  Fun  ( 𝑏  ∘f   ↑  𝐺 ) ) | 
						
							| 79 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 0g ‘ 𝑇 )  ∈  V ) | 
						
							| 80 | 5 | psrbag | ⊢ ( 𝐼  ∈  𝑊  →  ( 𝑏  ∈  𝐷  ↔  ( 𝑏 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝑏  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 81 | 11 80 | syl | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↔  ( 𝑏 : 𝐼 ⟶ ℕ0  ∧  ( ◡ 𝑏  “  ℕ )  ∈  Fin ) ) ) | 
						
							| 82 | 81 | simplbda | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ◡ 𝑏  “  ℕ )  ∈  Fin ) | 
						
							| 83 | 72 | ffnd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑏  Fn  𝐼 ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  𝑏  Fn  𝐼 ) | 
						
							| 85 | 15 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐼 ) | 
						
							| 86 | 85 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  𝐺  Fn  𝐼 ) | 
						
							| 87 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 88 |  | eldifi | ⊢ ( 𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) )  →  𝑦  ∈  𝐼 ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  𝑦  ∈  𝐼 ) | 
						
							| 90 |  | fnfvof | ⊢ ( ( ( 𝑏  Fn  𝐼  ∧  𝐺  Fn  𝐼 )  ∧  ( 𝐼  ∈  𝑊  ∧  𝑦  ∈  𝐼 ) )  →  ( ( 𝑏  ∘f   ↑  𝐺 ) ‘ 𝑦 )  =  ( ( 𝑏 ‘ 𝑦 )  ↑  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 91 | 84 86 87 89 90 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  ( ( 𝑏  ∘f   ↑  𝐺 ) ‘ 𝑦 )  =  ( ( 𝑏 ‘ 𝑦 )  ↑  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 92 |  | ffvelcdm | ⊢ ( ( 𝑏 : 𝐼 ⟶ ℕ0  ∧  𝑦  ∈  𝐼 )  →  ( 𝑏 ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 93 | 72 88 92 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  ( 𝑏 ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 94 |  | elnn0 | ⊢ ( ( 𝑏 ‘ 𝑦 )  ∈  ℕ0  ↔  ( ( 𝑏 ‘ 𝑦 )  ∈  ℕ  ∨  ( 𝑏 ‘ 𝑦 )  =  0 ) ) | 
						
							| 95 | 93 94 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  ( ( 𝑏 ‘ 𝑦 )  ∈  ℕ  ∨  ( 𝑏 ‘ 𝑦 )  =  0 ) ) | 
						
							| 96 |  | eldifn | ⊢ ( 𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) )  →  ¬  𝑦  ∈  ( ◡ 𝑏  “  ℕ ) ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  ¬  𝑦  ∈  ( ◡ 𝑏  “  ℕ ) ) | 
						
							| 98 | 83 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  ∧  ( 𝑏 ‘ 𝑦 )  ∈  ℕ )  →  𝑏  Fn  𝐼 ) | 
						
							| 99 | 88 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  ∧  ( 𝑏 ‘ 𝑦 )  ∈  ℕ )  →  𝑦  ∈  𝐼 ) | 
						
							| 100 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  ∧  ( 𝑏 ‘ 𝑦 )  ∈  ℕ )  →  ( 𝑏 ‘ 𝑦 )  ∈  ℕ ) | 
						
							| 101 | 98 99 100 | elpreimad | ⊢ ( ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  ∧  ( 𝑏 ‘ 𝑦 )  ∈  ℕ )  →  𝑦  ∈  ( ◡ 𝑏  “  ℕ ) ) | 
						
							| 102 | 97 101 | mtand | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  ¬  ( 𝑏 ‘ 𝑦 )  ∈  ℕ ) | 
						
							| 103 | 95 102 | orcnd | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  ( 𝑏 ‘ 𝑦 )  =  0 ) | 
						
							| 104 | 103 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  ( ( 𝑏 ‘ 𝑦 )  ↑  ( 𝐺 ‘ 𝑦 ) )  =  ( 0  ↑  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 105 |  | ffvelcdm | ⊢ ( ( 𝐺 : 𝐼 ⟶ 𝐶  ∧  𝑦  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑦 )  ∈  𝐶 ) | 
						
							| 106 | 73 88 105 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  ( 𝐺 ‘ 𝑦 )  ∈  𝐶 ) | 
						
							| 107 | 59 60 7 | mulg0 | ⊢ ( ( 𝐺 ‘ 𝑦 )  ∈  𝐶  →  ( 0  ↑  ( 𝐺 ‘ 𝑦 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 108 | 106 107 | syl | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  ( 0  ↑  ( 𝐺 ‘ 𝑦 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 109 | 91 104 108 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  ∧  𝑦  ∈  ( 𝐼  ∖  ( ◡ 𝑏  “  ℕ ) ) )  →  ( ( 𝑏  ∘f   ↑  𝐺 ) ‘ 𝑦 )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 110 | 75 109 | suppss | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝑏  ∘f   ↑  𝐺 )  supp  ( 0g ‘ 𝑇 ) )  ⊆  ( ◡ 𝑏  “  ℕ ) ) | 
						
							| 111 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑏  ∘f   ↑  𝐺 )  ∈  V  ∧  Fun  ( 𝑏  ∘f   ↑  𝐺 )  ∧  ( 0g ‘ 𝑇 )  ∈  V )  ∧  ( ( ◡ 𝑏  “  ℕ )  ∈  Fin  ∧  ( ( 𝑏  ∘f   ↑  𝐺 )  supp  ( 0g ‘ 𝑇 ) )  ⊆  ( ◡ 𝑏  “  ℕ ) ) )  →  ( 𝑏  ∘f   ↑  𝐺 )  finSupp  ( 0g ‘ 𝑇 ) ) | 
						
							| 112 | 77 78 79 82 110 111 | syl32anc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑏  ∘f   ↑  𝐺 )  finSupp  ( 0g ‘ 𝑇 ) ) | 
						
							| 113 | 59 60 63 64 75 112 | gsumcl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) )  ∈  𝐶 ) | 
						
							| 114 | 3 8 | ringcl | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ∈  𝐶  ∧  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) )  ∈  𝐶 )  →  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  ∈  𝐶 ) | 
						
							| 115 | 51 58 113 114 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  ∈  𝐶 ) | 
						
							| 116 | 115 | fmpttd | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) | 
						
							| 117 |  | eldifsnneq | ⊢ ( 𝑏  ∈  ( 𝐷  ∖  { 𝐴 } )  →  ¬  𝑏  =  𝐴 ) | 
						
							| 118 | 117 | iffalsed | ⊢ ( 𝑏  ∈  ( 𝐷  ∖  { 𝐴 } )  →  if ( 𝑏  =  𝐴 ,  𝐻 ,   0  )  =   0  ) | 
						
							| 119 | 118 | adantl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  { 𝐴 } ) )  →  if ( 𝑏  =  𝐴 ,  𝐻 ,   0  )  =   0  ) | 
						
							| 120 | 119 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  { 𝐴 } ) )  →  ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  =  ( 𝐹 ‘  0  ) ) | 
						
							| 121 |  | rhmghm | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 122 | 14 121 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 123 | 16 43 | ghmid | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 124 | 122 123 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 125 | 124 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  { 𝐴 } ) )  →  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 126 | 120 125 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  { 𝐴 } ) )  →  ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 127 | 126 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  { 𝐴 } ) )  →  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( 0g ‘ 𝑆 )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 128 | 45 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  { 𝐴 } ) )  →  𝑆  ∈  Ring ) | 
						
							| 129 |  | eldifi | ⊢ ( 𝑏  ∈  ( 𝐷  ∖  { 𝐴 } )  →  𝑏  ∈  𝐷 ) | 
						
							| 130 | 129 113 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  { 𝐴 } ) )  →  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) )  ∈  𝐶 ) | 
						
							| 131 | 3 8 43 | ringlz | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) )  ∈  𝐶 )  →  ( ( 0g ‘ 𝑆 )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 132 | 128 130 131 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  { 𝐴 } ) )  →  ( ( 0g ‘ 𝑆 )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 133 | 127 132 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐷  ∖  { 𝐴 } ) )  →  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 134 | 133 50 | suppss2 | ⊢ ( 𝜑  →  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  { 𝐴 } ) | 
						
							| 135 | 3 43 47 50 17 116 134 | gsumpt | ⊢ ( 𝜑  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  =  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ‘ 𝐴 ) ) | 
						
							| 136 | 42 135 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) )  =  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ‘ 𝐴 ) ) | 
						
							| 137 |  | iftrue | ⊢ ( 𝑏  =  𝐴  →  if ( 𝑏  =  𝐴 ,  𝐻 ,   0  )  =  𝐻 ) | 
						
							| 138 | 137 | fveq2d | ⊢ ( 𝑏  =  𝐴  →  ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  =  ( 𝐹 ‘ 𝐻 ) ) | 
						
							| 139 |  | oveq1 | ⊢ ( 𝑏  =  𝐴  →  ( 𝑏  ∘f   ↑  𝐺 )  =  ( 𝐴  ∘f   ↑  𝐺 ) ) | 
						
							| 140 | 139 | oveq2d | ⊢ ( 𝑏  =  𝐴  →  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) )  =  ( 𝑇  Σg  ( 𝐴  ∘f   ↑  𝐺 ) ) ) | 
						
							| 141 | 138 140 | oveq12d | ⊢ ( 𝑏  =  𝐴  →  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  =  ( ( 𝐹 ‘ 𝐻 )  ·  ( 𝑇  Σg  ( 𝐴  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 142 |  | eqid | ⊢ ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  =  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 143 |  | ovex | ⊢ ( ( 𝐹 ‘ 𝐻 )  ·  ( 𝑇  Σg  ( 𝐴  ∘f   ↑  𝐺 ) ) )  ∈  V | 
						
							| 144 | 141 142 143 | fvmpt | ⊢ ( 𝐴  ∈  𝐷  →  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ‘ 𝐴 )  =  ( ( 𝐹 ‘ 𝐻 )  ·  ( 𝑇  Σg  ( 𝐴  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 145 | 17 144 | syl | ⊢ ( 𝜑  →  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ if ( 𝑏  =  𝐴 ,  𝐻 ,   0  ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ‘ 𝐴 )  =  ( ( 𝐹 ‘ 𝐻 )  ·  ( 𝑇  Σg  ( 𝐴  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 146 | 29 136 145 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐸 ‘ ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  𝐴 ,  𝐻 ,   0  ) ) )  =  ( ( 𝐹 ‘ 𝐻 )  ·  ( 𝑇  Σg  ( 𝐴  ∘f   ↑  𝐺 ) ) ) ) |