Step |
Hyp |
Ref |
Expression |
1 |
|
evlslem1.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
evlslem1.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
evlslem1.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
4 |
|
evlslem1.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
5 |
|
evlslem1.t |
⊢ 𝑇 = ( mulGrp ‘ 𝑆 ) |
6 |
|
evlslem1.x |
⊢ ↑ = ( .g ‘ 𝑇 ) |
7 |
|
evlslem1.m |
⊢ · = ( .r ‘ 𝑆 ) |
8 |
|
evlslem1.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
9 |
|
evlslem1.e |
⊢ 𝐸 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
10 |
|
evlslem1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
11 |
|
evlslem1.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
12 |
|
evlslem1.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
13 |
|
evlslem1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
14 |
|
evlslem1.g |
⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) |
15 |
|
evlslem6.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
16 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
17 |
12 16
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ Ring ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
20 |
19 3
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
21 |
13 20
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
23 |
1 19 2 4 15
|
mplelf |
⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
24 |
23
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑌 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
25 |
22 24
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) ∈ 𝐶 ) |
26 |
5 3
|
mgpbas |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
27 |
5
|
crngmgp |
⊢ ( 𝑆 ∈ CRing → 𝑇 ∈ CMnd ) |
28 |
12 27
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ CMnd ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑇 ∈ CMnd ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) |
31 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
32 |
4 26 6 29 30 31
|
psrbagev2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
33 |
3 7
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) ∈ 𝐶 ∧ ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) → ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ∈ 𝐶 ) |
34 |
18 25 32 33
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ∈ 𝐶 ) |
35 |
34
|
fmpttd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) |
36 |
|
ovexd |
⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) |
37 |
4 36
|
rabexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
38 |
37
|
mptexd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∈ V ) |
39 |
|
funmpt |
⊢ Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
40 |
39
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
41 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ V ) |
42 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
43 |
1 2 42 15 11
|
mplelsfi |
⊢ ( 𝜑 → 𝑌 finSupp ( 0g ‘ 𝑅 ) ) |
44 |
43
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
45 |
23
|
feqmptd |
⊢ ( 𝜑 → 𝑌 = ( 𝑏 ∈ 𝐷 ↦ ( 𝑌 ‘ 𝑏 ) ) ) |
46 |
45
|
oveq1d |
⊢ ( 𝜑 → ( 𝑌 supp ( 0g ‘ 𝑅 ) ) = ( ( 𝑏 ∈ 𝐷 ↦ ( 𝑌 ‘ 𝑏 ) ) supp ( 0g ‘ 𝑅 ) ) ) |
47 |
|
eqimss2 |
⊢ ( ( 𝑌 supp ( 0g ‘ 𝑅 ) ) = ( ( 𝑏 ∈ 𝐷 ↦ ( 𝑌 ‘ 𝑏 ) ) supp ( 0g ‘ 𝑅 ) ) → ( ( 𝑏 ∈ 𝐷 ↦ ( 𝑌 ‘ 𝑏 ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) |
48 |
46 47
|
syl |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( 𝑌 ‘ 𝑏 ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) |
49 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
50 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
51 |
42 50
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
52 |
13 49 51
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
53 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑌 ‘ 𝑏 ) ∈ V ) |
54 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
55 |
48 52 53 54
|
suppssfv |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) |
56 |
3 7 50
|
ringlz |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝐶 ) → ( ( 0g ‘ 𝑆 ) · 𝑥 ) = ( 0g ‘ 𝑆 ) ) |
57 |
17 56
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 0g ‘ 𝑆 ) · 𝑥 ) = ( 0g ‘ 𝑆 ) ) |
58 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) ∈ V ) |
59 |
55 57 58 32 41
|
suppssov1 |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) |
60 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∈ V ∧ Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ∧ ( ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ∧ ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( 𝑌 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
61 |
38 40 41 44 59 60
|
syl32anc |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
62 |
35 61
|
jca |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) ) |