| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlslem1.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | evlslem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | evlslem1.c | ⊢ 𝐶  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | evlslem1.d | ⊢ 𝐷  =  { ℎ  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 5 |  | evlslem1.t | ⊢ 𝑇  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 6 |  | evlslem1.x | ⊢  ↑   =  ( .g ‘ 𝑇 ) | 
						
							| 7 |  | evlslem1.m | ⊢  ·   =  ( .r ‘ 𝑆 ) | 
						
							| 8 |  | evlslem1.v | ⊢ 𝑉  =  ( 𝐼  mVar  𝑅 ) | 
						
							| 9 |  | evlslem1.e | ⊢ 𝐸  =  ( 𝑝  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) ) | 
						
							| 10 |  | evlslem1.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 11 |  | evlslem1.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 12 |  | evlslem1.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 13 |  | evlslem1.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 14 |  | evlslem1.g | ⊢ ( 𝜑  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 15 |  | evlslem6.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 16 |  | crngring | ⊢ ( 𝑆  ∈  CRing  →  𝑆  ∈  Ring ) | 
						
							| 17 | 12 16 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑆  ∈  Ring ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 20 | 19 3 | rhmf | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) | 
						
							| 21 | 13 20 | syl | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) | 
						
							| 23 | 1 19 2 4 15 | mplelf | ⊢ ( 𝜑  →  𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 24 | 23 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑌 ‘ 𝑏 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 25 | 22 24 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ∈  𝐶 ) | 
						
							| 26 | 5 3 | mgpbas | ⊢ 𝐶  =  ( Base ‘ 𝑇 ) | 
						
							| 27 | 5 | crngmgp | ⊢ ( 𝑆  ∈  CRing  →  𝑇  ∈  CMnd ) | 
						
							| 28 | 12 27 | syl | ⊢ ( 𝜑  →  𝑇  ∈  CMnd ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑇  ∈  CMnd ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝑏  ∈  𝐷 ) | 
						
							| 31 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  𝐺 : 𝐼 ⟶ 𝐶 ) | 
						
							| 32 | 4 26 6 29 30 31 | psrbagev2 | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) )  ∈  𝐶 ) | 
						
							| 33 | 3 7 | ringcl | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ∈  𝐶  ∧  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) )  ∈  𝐶 )  →  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  ∈  𝐶 ) | 
						
							| 34 | 18 25 32 33 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) )  ∈  𝐶 ) | 
						
							| 35 | 34 | fmpttd | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) | 
						
							| 36 |  | ovexd | ⊢ ( 𝜑  →  ( ℕ0  ↑m  𝐼 )  ∈  V ) | 
						
							| 37 | 4 36 | rabexd | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 38 | 37 | mptexd | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  ∈  V ) | 
						
							| 39 |  | funmpt | ⊢ Fun  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  Fun  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) ) | 
						
							| 41 |  | fvexd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  ∈  V ) | 
						
							| 42 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 43 | 1 2 42 15 | mplelsfi | ⊢ ( 𝜑  →  𝑌  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 44 | 43 | fsuppimpd | ⊢ ( 𝜑  →  ( 𝑌  supp  ( 0g ‘ 𝑅 ) )  ∈  Fin ) | 
						
							| 45 | 23 | feqmptd | ⊢ ( 𝜑  →  𝑌  =  ( 𝑏  ∈  𝐷  ↦  ( 𝑌 ‘ 𝑏 ) ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝜑  →  ( 𝑌  supp  ( 0g ‘ 𝑅 ) )  =  ( ( 𝑏  ∈  𝐷  ↦  ( 𝑌 ‘ 𝑏 ) )  supp  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 47 |  | eqimss2 | ⊢ ( ( 𝑌  supp  ( 0g ‘ 𝑅 ) )  =  ( ( 𝑏  ∈  𝐷  ↦  ( 𝑌 ‘ 𝑏 ) )  supp  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑏  ∈  𝐷  ↦  ( 𝑌 ‘ 𝑏 ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  ( 𝑌  supp  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( 𝜑  →  ( ( 𝑏  ∈  𝐷  ↦  ( 𝑌 ‘ 𝑏 ) )  supp  ( 0g ‘ 𝑅 ) )  ⊆  ( 𝑌  supp  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 49 |  | rhmghm | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 50 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 51 | 42 50 | ghmid | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 52 | 13 49 51 | 3syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 53 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝑌 ‘ 𝑏 )  ∈  V ) | 
						
							| 54 |  | fvexd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 55 | 48 52 53 54 | suppssfv | ⊢ ( 𝜑  →  ( ( 𝑏  ∈  𝐷  ↦  ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  ( 𝑌  supp  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 56 | 3 7 50 | ringlz | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑥  ∈  𝐶 )  →  ( ( 0g ‘ 𝑆 )  ·  𝑥 )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 57 | 17 56 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( ( 0g ‘ 𝑆 )  ·  𝑥 )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 58 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐷 )  →  ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ∈  V ) | 
						
							| 59 | 55 57 58 32 41 | suppssov1 | ⊢ ( 𝜑  →  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  ( 𝑌  supp  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 60 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  ∈  V  ∧  Fun  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  ∧  ( 0g ‘ 𝑆 )  ∈  V )  ∧  ( ( 𝑌  supp  ( 0g ‘ 𝑅 ) )  ∈  Fin  ∧  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  supp  ( 0g ‘ 𝑆 ) )  ⊆  ( 𝑌  supp  ( 0g ‘ 𝑅 ) ) ) )  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) | 
						
							| 61 | 38 40 41 44 59 60 | syl32anc | ⊢ ( 𝜑  →  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) | 
						
							| 62 | 35 61 | jca | ⊢ ( 𝜑  →  ( ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶  ∧  ( 𝑏  ∈  𝐷  ↦  ( ( 𝐹 ‘ ( 𝑌 ‘ 𝑏 ) )  ·  ( 𝑇  Σg  ( 𝑏  ∘f   ↑  𝐺 ) ) ) )  finSupp  ( 0g ‘ 𝑆 ) ) ) |