Metamath Proof Explorer


Theorem evlsmhpvvval

Description: Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval is that b e. D is restricted to b e. G , that is, we can evaluate an N -th degree homogeneous polynomial over just the terms where the sum of all variable degrees is N . (Contributed by SN, 5-Mar-2025)

Ref Expression
Hypotheses evlsmhpvvval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlsmhpvvval.p 𝐻 = ( 𝐼 mHomP 𝑈 )
evlsmhpvvval.u 𝑈 = ( 𝑆s 𝑅 )
evlsmhpvvval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
evlsmhpvvval.g 𝐺 = { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 }
evlsmhpvvval.k 𝐾 = ( Base ‘ 𝑆 )
evlsmhpvvval.m 𝑀 = ( mulGrp ‘ 𝑆 )
evlsmhpvvval.w = ( .g𝑀 )
evlsmhpvvval.x · = ( .r𝑆 )
evlsmhpvvval.i ( 𝜑𝐼𝑉 )
evlsmhpvvval.s ( 𝜑𝑆 ∈ CRing )
evlsmhpvvval.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evlsmhpvvval.n ( 𝜑𝑁 ∈ ℕ0 )
evlsmhpvvval.f ( 𝜑𝐹 ∈ ( 𝐻𝑁 ) )
evlsmhpvvval.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
Assertion evlsmhpvvval ( 𝜑 → ( ( 𝑄𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏𝐺 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 evlsmhpvvval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlsmhpvvval.p 𝐻 = ( 𝐼 mHomP 𝑈 )
3 evlsmhpvvval.u 𝑈 = ( 𝑆s 𝑅 )
4 evlsmhpvvval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
5 evlsmhpvvval.g 𝐺 = { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 }
6 evlsmhpvvval.k 𝐾 = ( Base ‘ 𝑆 )
7 evlsmhpvvval.m 𝑀 = ( mulGrp ‘ 𝑆 )
8 evlsmhpvvval.w = ( .g𝑀 )
9 evlsmhpvvval.x · = ( .r𝑆 )
10 evlsmhpvvval.i ( 𝜑𝐼𝑉 )
11 evlsmhpvvval.s ( 𝜑𝑆 ∈ CRing )
12 evlsmhpvvval.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
13 evlsmhpvvval.n ( 𝜑𝑁 ∈ ℕ0 )
14 evlsmhpvvval.f ( 𝜑𝐹 ∈ ( 𝐻𝑁 ) )
15 evlsmhpvvval.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
16 eqid ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly 𝑈 )
17 eqid ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑈 ) )
18 3 ovexi 𝑈 ∈ V
19 18 a1i ( 𝜑𝑈 ∈ V )
20 2 16 17 10 19 13 14 mhpmpl ( 𝜑𝐹 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) )
21 1 16 17 3 4 6 7 8 9 10 11 12 20 15 evlsvvval ( 𝜑 → ( ( 𝑄𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) ) )
22 eqid ( 0g𝑆 ) = ( 0g𝑆 )
23 11 crngringd ( 𝜑𝑆 ∈ Ring )
24 23 ringcmnd ( 𝜑𝑆 ∈ CMnd )
25 ovex ( ℕ0m 𝐼 ) ∈ V
26 4 25 rabex2 𝐷 ∈ V
27 26 a1i ( 𝜑𝐷 ∈ V )
28 23 adantr ( ( 𝜑𝑏𝐷 ) → 𝑆 ∈ Ring )
29 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
30 16 29 17 4 20 mplelf ( 𝜑𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) )
31 3 subrgbas ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) )
32 6 subrgss ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅𝐾 )
33 31 32 eqsstrrd ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( Base ‘ 𝑈 ) ⊆ 𝐾 )
34 12 33 syl ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 )
35 30 34 fssd ( 𝜑𝐹 : 𝐷𝐾 )
36 35 ffvelcdmda ( ( 𝜑𝑏𝐷 ) → ( 𝐹𝑏 ) ∈ 𝐾 )
37 10 adantr ( ( 𝜑𝑏𝐷 ) → 𝐼𝑉 )
38 11 adantr ( ( 𝜑𝑏𝐷 ) → 𝑆 ∈ CRing )
39 15 adantr ( ( 𝜑𝑏𝐷 ) → 𝐴 ∈ ( 𝐾m 𝐼 ) )
40 simpr ( ( 𝜑𝑏𝐷 ) → 𝑏𝐷 )
41 4 6 7 8 37 38 39 40 evlsvvvallem ( ( 𝜑𝑏𝐷 ) → ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ∈ 𝐾 )
42 6 9 28 36 41 ringcld ( ( 𝜑𝑏𝐷 ) → ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ∈ 𝐾 )
43 42 fmpttd ( 𝜑 → ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) : 𝐷𝐾 )
44 3 22 subrg0 ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g𝑆 ) = ( 0g𝑈 ) )
45 12 44 syl ( 𝜑 → ( 0g𝑆 ) = ( 0g𝑈 ) )
46 45 oveq2d ( 𝜑 → ( 𝐹 supp ( 0g𝑆 ) ) = ( 𝐹 supp ( 0g𝑈 ) ) )
47 eqid ( 0g𝑈 ) = ( 0g𝑈 )
48 2 47 4 10 19 13 14 mhpdeg ( 𝜑 → ( 𝐹 supp ( 0g𝑈 ) ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } )
49 48 5 sseqtrrdi ( 𝜑 → ( 𝐹 supp ( 0g𝑈 ) ) ⊆ 𝐺 )
50 46 49 eqsstrd ( 𝜑 → ( 𝐹 supp ( 0g𝑆 ) ) ⊆ 𝐺 )
51 fvexd ( 𝜑 → ( 0g𝑆 ) ∈ V )
52 35 50 27 51 suppssr ( ( 𝜑𝑏 ∈ ( 𝐷𝐺 ) ) → ( 𝐹𝑏 ) = ( 0g𝑆 ) )
53 52 oveq1d ( ( 𝜑𝑏 ∈ ( 𝐷𝐺 ) ) → ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) = ( ( 0g𝑆 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) )
54 23 adantr ( ( 𝜑𝑏 ∈ ( 𝐷𝐺 ) ) → 𝑆 ∈ Ring )
55 eldifi ( 𝑏 ∈ ( 𝐷𝐺 ) → 𝑏𝐷 )
56 55 41 sylan2 ( ( 𝜑𝑏 ∈ ( 𝐷𝐺 ) ) → ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ∈ 𝐾 )
57 6 9 22 54 56 ringlzd ( ( 𝜑𝑏 ∈ ( 𝐷𝐺 ) ) → ( ( 0g𝑆 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) = ( 0g𝑆 ) )
58 53 57 eqtrd ( ( 𝜑𝑏 ∈ ( 𝐷𝐺 ) ) → ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) = ( 0g𝑆 ) )
59 58 27 suppss2 ( 𝜑 → ( ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) supp ( 0g𝑆 ) ) ⊆ 𝐺 )
60 4 16 3 17 6 7 8 9 10 11 12 20 15 evlsvvvallem2 ( 𝜑 → ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) finSupp ( 0g𝑆 ) )
61 6 22 24 27 43 59 60 gsumres ( 𝜑 → ( 𝑆 Σg ( ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) ↾ 𝐺 ) ) = ( 𝑆 Σg ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) ) )
62 5 ssrab3 𝐺𝐷
63 62 a1i ( 𝜑𝐺𝐷 )
64 63 resmptd ( 𝜑 → ( ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) ↾ 𝐺 ) = ( 𝑏𝐺 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) )
65 64 oveq2d ( 𝜑 → ( 𝑆 Σg ( ( 𝑏𝐷 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) ↾ 𝐺 ) ) = ( 𝑆 Σg ( 𝑏𝐺 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) ) )
66 21 61 65 3eqtr2d ( 𝜑 → ( ( 𝑄𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏𝐺 ↦ ( ( 𝐹𝑏 ) · ( 𝑀 Σg ( 𝑖𝐼 ↦ ( ( 𝑏𝑖 ) ( 𝐴𝑖 ) ) ) ) ) ) ) )