Step |
Hyp |
Ref |
Expression |
1 |
|
evlsmhpvvval.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsmhpvvval.p |
⊢ 𝐻 = ( 𝐼 mHomP 𝑈 ) |
3 |
|
evlsmhpvvval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
evlsmhpvvval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
5 |
|
evlsmhpvvval.g |
⊢ 𝐺 = { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } |
6 |
|
evlsmhpvvval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
7 |
|
evlsmhpvvval.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) |
8 |
|
evlsmhpvvval.w |
⊢ ↑ = ( .g ‘ 𝑀 ) |
9 |
|
evlsmhpvvval.x |
⊢ · = ( .r ‘ 𝑆 ) |
10 |
|
evlsmhpvvval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
11 |
|
evlsmhpvvval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
12 |
|
evlsmhpvvval.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
13 |
|
evlsmhpvvval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
14 |
|
evlsmhpvvval.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐻 ‘ 𝑁 ) ) |
15 |
|
evlsmhpvvval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
16 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly 𝑈 ) |
17 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) |
18 |
3
|
ovexi |
⊢ 𝑈 ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
20 |
2 16 17 10 19 13 14
|
mhpmpl |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
21 |
1 16 17 3 4 6 7 8 9 10 11 12 20 15
|
evlsvvval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
23 |
11
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
24 |
23
|
ringcmnd |
⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
25 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
26 |
4 25
|
rabex2 |
⊢ 𝐷 ∈ V |
27 |
26
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
28 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ Ring ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
30 |
16 29 17 4 20
|
mplelf |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) |
31 |
3
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
32 |
6
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
33 |
31 32
|
eqsstrrd |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
34 |
12 33
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
35 |
30 34
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐾 ) |
36 |
35
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐾 ) |
37 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
38 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ CRing ) |
39 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) |
41 |
4 6 7 8 37 38 39 40
|
evlsvvvallem |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
42 |
6 9 28 36 41
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ∈ 𝐾 ) |
43 |
42
|
fmpttd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) : 𝐷 ⟶ 𝐾 ) |
44 |
3 22
|
subrg0 |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
45 |
12 44
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑆 ) ) = ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) |
47 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
48 |
2 47 4 10 19 13 14
|
mhpdeg |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
49 |
48 5
|
sseqtrrdi |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ⊆ 𝐺 ) |
50 |
46 49
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑆 ) ) ⊆ 𝐺 ) |
51 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ V ) |
52 |
35 50 27 51
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ 𝐺 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑆 ) ) |
53 |
52
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ 𝐺 ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
54 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ 𝐺 ) ) → 𝑆 ∈ Ring ) |
55 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝐷 ∖ 𝐺 ) → 𝑏 ∈ 𝐷 ) |
56 |
55 41
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ 𝐺 ) ) → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
57 |
6 9 22 54 56
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ 𝐺 ) ) → ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
58 |
53 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ 𝐺 ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
59 |
58 27
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ 𝐺 ) |
60 |
4 16 3 17 6 7 8 9 10 11 12 20 15
|
evlsvvvallem2 |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
61 |
6 22 24 27 43 59 60
|
gsumres |
⊢ ( 𝜑 → ( 𝑆 Σg ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ↾ 𝐺 ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
62 |
5
|
ssrab3 |
⊢ 𝐺 ⊆ 𝐷 |
63 |
62
|
a1i |
⊢ ( 𝜑 → 𝐺 ⊆ 𝐷 ) |
64 |
63
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ↾ 𝐺 ) = ( 𝑏 ∈ 𝐺 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
65 |
64
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 Σg ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ↾ 𝐺 ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐺 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
66 |
21 61 65
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐺 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |