| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlspw.q | ⊢ 𝑄  =  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 ) | 
						
							| 2 |  | evlspw.w | ⊢ 𝑊  =  ( 𝐼  mPoly  𝑈 ) | 
						
							| 3 |  | evlspw.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑊 ) | 
						
							| 4 |  | evlspw.e | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 5 |  | evlspw.u | ⊢ 𝑈  =  ( 𝑆  ↾s  𝑅 ) | 
						
							| 6 |  | evlspw.p | ⊢ 𝑃  =  ( 𝑆  ↑s  ( 𝐾  ↑m  𝐼 ) ) | 
						
							| 7 |  | evlspw.h | ⊢ 𝐻  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 8 |  | evlspw.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 9 |  | evlspw.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 10 |  | evlspw.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 11 |  | evlspw.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 12 |  | evlspw.r | ⊢ ( 𝜑  →  𝑅  ∈  ( SubRing ‘ 𝑆 ) ) | 
						
							| 13 |  | evlspw.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 14 |  | evlspw.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 15 | 1 2 5 6 8 | evlsrhm | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  𝑄  ∈  ( 𝑊  RingHom  𝑃 ) ) | 
						
							| 16 | 10 11 12 15 | syl3anc | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑊  RingHom  𝑃 ) ) | 
						
							| 17 | 3 7 | rhmmhm | ⊢ ( 𝑄  ∈  ( 𝑊  RingHom  𝑃 )  →  𝑄  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 19 | 3 9 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 20 |  | eqid | ⊢ ( .g ‘ 𝐻 )  =  ( .g ‘ 𝐻 ) | 
						
							| 21 | 19 4 20 | mhmmulg | ⊢ ( ( 𝑄  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 )  →  ( 𝑄 ‘ ( 𝑁  ↑  𝑋 ) )  =  ( 𝑁 ( .g ‘ 𝐻 ) ( 𝑄 ‘ 𝑋 ) ) ) | 
						
							| 22 | 18 13 14 21 | syl3anc | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝑁  ↑  𝑋 ) )  =  ( 𝑁 ( .g ‘ 𝐻 ) ( 𝑄 ‘ 𝑋 ) ) ) |