Step |
Hyp |
Ref |
Expression |
1 |
|
evlsrhm.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsrhm.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsrhm.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
evlsrhm.t |
⊢ 𝑇 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) |
5 |
|
evlsrhm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar 𝑈 ) |
7 |
|
eqid |
⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) |
10 |
1 2 6 3 4 5 7 8 9
|
evlsval2 |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ∧ ( ( 𝑄 ∘ ( algSc ‘ 𝑊 ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄 ∘ ( 𝐼 mVar 𝑈 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) ) ) ) |
11 |
10
|
simpld |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ) |