| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlssca.q | ⊢ 𝑄  =  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 ) | 
						
							| 2 |  | evlssca.w | ⊢ 𝑊  =  ( 𝐼  mPoly  𝑈 ) | 
						
							| 3 |  | evlssca.u | ⊢ 𝑈  =  ( 𝑆  ↾s  𝑅 ) | 
						
							| 4 |  | evlssca.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | evlssca.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 6 |  | evlssca.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 7 |  | evlssca.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 8 |  | evlssca.r | ⊢ ( 𝜑  →  𝑅  ∈  ( SubRing ‘ 𝑆 ) ) | 
						
							| 9 |  | evlssca.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝐼  mVar  𝑈 )  =  ( 𝐼  mVar  𝑈 ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑆  ↑s  ( 𝐵  ↑m  𝐼 ) )  =  ( 𝑆  ↑s  ( 𝐵  ↑m  𝐼 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑥  ∈  𝑅  ↦  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑥 } ) )  =  ( 𝑥  ∈  𝑅  ↦  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑥 } ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑥  ∈  𝐼  ↦  ( 𝑦  ∈  ( 𝐵  ↑m  𝐼 )  ↦  ( 𝑦 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑦  ∈  ( 𝐵  ↑m  𝐼 )  ↦  ( 𝑦 ‘ 𝑥 ) ) ) | 
						
							| 14 | 1 2 10 3 11 4 5 12 13 | evlsval2 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑆  ∈  CRing  ∧  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝑄  ∈  ( 𝑊  RingHom  ( 𝑆  ↑s  ( 𝐵  ↑m  𝐼 ) ) )  ∧  ( ( 𝑄  ∘  𝐴 )  =  ( 𝑥  ∈  𝑅  ↦  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑄  ∘  ( 𝐼  mVar  𝑈 ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑦  ∈  ( 𝐵  ↑m  𝐼 )  ↦  ( 𝑦 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 15 | 6 7 8 14 | syl3anc | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑊  RingHom  ( 𝑆  ↑s  ( 𝐵  ↑m  𝐼 ) ) )  ∧  ( ( 𝑄  ∘  𝐴 )  =  ( 𝑥  ∈  𝑅  ↦  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑥 } ) )  ∧  ( 𝑄  ∘  ( 𝐼  mVar  𝑈 ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑦  ∈  ( 𝐵  ↑m  𝐼 )  ↦  ( 𝑦 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 16 | 15 | simprld | ⊢ ( 𝜑  →  ( 𝑄  ∘  𝐴 )  =  ( 𝑥  ∈  𝑅  ↦  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑥 } ) ) ) | 
						
							| 17 | 16 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑄  ∘  𝐴 ) ‘ 𝑋 )  =  ( ( 𝑥  ∈  𝑅  ↦  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑥 } ) ) ‘ 𝑋 ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 20 | 3 | subrgring | ⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  𝑈  ∈  Ring ) | 
						
							| 21 | 8 20 | syl | ⊢ ( 𝜑  →  𝑈  ∈  Ring ) | 
						
							| 22 | 2 18 19 5 6 21 | mplasclf | ⊢ ( 𝜑  →  𝐴 : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑊 ) ) | 
						
							| 23 | 4 | subrgss | ⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  𝑅  ⊆  𝐵 ) | 
						
							| 24 | 3 4 | ressbas2 | ⊢ ( 𝑅  ⊆  𝐵  →  𝑅  =  ( Base ‘ 𝑈 ) ) | 
						
							| 25 | 8 23 24 | 3syl | ⊢ ( 𝜑  →  𝑅  =  ( Base ‘ 𝑈 ) ) | 
						
							| 26 | 25 | feq2d | ⊢ ( 𝜑  →  ( 𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 )  ↔  𝐴 : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑊 ) ) ) | 
						
							| 27 | 22 26 | mpbird | ⊢ ( 𝜑  →  𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 ) ) | 
						
							| 28 |  | fvco3 | ⊢ ( ( 𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 )  ∧  𝑋  ∈  𝑅 )  →  ( ( 𝑄  ∘  𝐴 ) ‘ 𝑋 )  =  ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ) | 
						
							| 29 | 27 9 28 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑄  ∘  𝐴 ) ‘ 𝑋 )  =  ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ) | 
						
							| 30 |  | sneq | ⊢ ( 𝑥  =  𝑋  →  { 𝑥 }  =  { 𝑋 } ) | 
						
							| 31 | 30 | xpeq2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑥 } )  =  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑋 } ) ) | 
						
							| 32 |  | ovex | ⊢ ( 𝐵  ↑m  𝐼 )  ∈  V | 
						
							| 33 |  | snex | ⊢ { 𝑋 }  ∈  V | 
						
							| 34 | 32 33 | xpex | ⊢ ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑋 } )  ∈  V | 
						
							| 35 | 31 12 34 | fvmpt | ⊢ ( 𝑋  ∈  𝑅  →  ( ( 𝑥  ∈  𝑅  ↦  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑥 } ) ) ‘ 𝑋 )  =  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑋 } ) ) | 
						
							| 36 | 9 35 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑅  ↦  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑥 } ) ) ‘ 𝑋 )  =  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑋 } ) ) | 
						
							| 37 | 17 29 36 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( ( 𝐵  ↑m  𝐼 )  ×  { 𝑋 } ) ) |