Step |
Hyp |
Ref |
Expression |
1 |
|
evlsscasrng.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsscasrng.o |
⊢ 𝑂 = ( 𝐼 eval 𝑆 ) |
3 |
|
evlsscasrng.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) |
4 |
|
evlsscasrng.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
evlsscasrng.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑆 ) |
6 |
|
evlsscasrng.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
7 |
|
evlsscasrng.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
8 |
|
evlsscasrng.c |
⊢ 𝐶 = ( algSc ‘ 𝑃 ) |
9 |
|
evlsscasrng.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
10 |
|
evlsscasrng.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
11 |
|
evlsscasrng.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
12 |
|
evlsscasrng.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
13 |
6
|
ressid |
⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
14 |
13
|
eqcomd |
⊢ ( 𝑆 ∈ CRing → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
15 |
10 14
|
syl |
⊢ ( 𝜑 → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 𝐼 mPoly 𝑆 ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) |
17 |
5 16
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ) |
19 |
8 18
|
eqtrid |
⊢ ( 𝜑 → 𝐶 = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ) |
20 |
19
|
fveq1d |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑋 ) = ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) = ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) ) |
22 |
|
eqid |
⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) |
23 |
|
eqid |
⊢ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) |
24 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) |
25 |
|
eqid |
⊢ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) |
26 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
27 |
6
|
subrgid |
⊢ ( 𝑆 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
28 |
10 26 27
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
29 |
6
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
30 |
11 29
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐵 ) |
31 |
30 12
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
32 |
22 23 24 6 25 9 10 28 31
|
evlssca |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
33 |
21 32
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
34 |
2 6
|
evlval |
⊢ 𝑂 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) |
35 |
34
|
a1i |
⊢ ( 𝜑 → 𝑂 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ) |
36 |
35
|
fveq1d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐶 ‘ 𝑋 ) ) = ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) ) |
37 |
1 3 4 6 7 9 10 11 12
|
evlssca |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
38 |
33 36 37
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝐶 ‘ 𝑋 ) ) ) |