| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							evlsscaval.q | 
							⊢ 𝑄  =  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							evlsscaval.p | 
							⊢ 𝑃  =  ( 𝐼  mPoly  𝑈 )  | 
						
						
							| 3 | 
							
								
							 | 
							evlsscaval.u | 
							⊢ 𝑈  =  ( 𝑆  ↾s  𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							evlsscaval.k | 
							⊢ 𝐾  =  ( Base ‘ 𝑆 )  | 
						
						
							| 5 | 
							
								
							 | 
							evlsscaval.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							evlsscaval.a | 
							⊢ 𝐴  =  ( algSc ‘ 𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							evlsscaval.i | 
							⊢ ( 𝜑  →  𝐼  ∈  𝑉 )  | 
						
						
							| 8 | 
							
								
							 | 
							evlsscaval.s | 
							⊢ ( 𝜑  →  𝑆  ∈  CRing )  | 
						
						
							| 9 | 
							
								
							 | 
							evlsscaval.r | 
							⊢ ( 𝜑  →  𝑅  ∈  ( SubRing ‘ 𝑆 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							evlsscaval.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑅 )  | 
						
						
							| 11 | 
							
								
							 | 
							evlsscaval.l | 
							⊢ ( 𝜑  →  𝐿  ∈  ( 𝐾  ↑m  𝐼 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 )  | 
						
						
							| 13 | 
							
								3
							 | 
							subrgring | 
							⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  𝑈  ∈  Ring )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑈  ∈  Ring )  | 
						
						
							| 15 | 
							
								2 5 12 6 7 14
							 | 
							mplasclf | 
							⊢ ( 𝜑  →  𝐴 : ( Base ‘ 𝑈 ) ⟶ 𝐵 )  | 
						
						
							| 16 | 
							
								3
							 | 
							subrgbas | 
							⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  𝑅  =  ( Base ‘ 𝑈 ) )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑅  =  ( Base ‘ 𝑈 ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							eleqtrd | 
							⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝑈 ) )  | 
						
						
							| 19 | 
							
								15 18
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								1 2 3 4 6 7 8 9 10
							 | 
							evlssca | 
							⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑋 } ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							fveq1d | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 )  =  ( ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑋 } ) ‘ 𝐿 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							fvconst2g | 
							⊢ ( ( 𝑋  ∈  𝑅  ∧  𝐿  ∈  ( 𝐾  ↑m  𝐼 ) )  →  ( ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑋 } ) ‘ 𝐿 )  =  𝑋 )  | 
						
						
							| 23 | 
							
								10 11 22
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( ( 𝐾  ↑m  𝐼 )  ×  { 𝑋 } ) ‘ 𝐿 )  =  𝑋 )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 )  =  𝑋 )  | 
						
						
							| 25 | 
							
								19 24
							 | 
							jca | 
							⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑋 )  ∈  𝐵  ∧  ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 )  =  𝑋 ) )  |