Step |
Hyp |
Ref |
Expression |
1 |
|
evlsval.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsval.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsval.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) |
4 |
|
evlsval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
evlsval.t |
⊢ 𝑇 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) |
6 |
|
evlsval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
7 |
|
evlsval.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
8 |
|
evlsval.x |
⊢ 𝑋 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) |
9 |
|
evlsval.y |
⊢ 𝑌 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
10 |
|
elex |
⊢ ( 𝐼 ∈ 𝑍 → 𝐼 ∈ V ) |
11 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
13 |
12
|
csbeq1d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
14 |
|
fvex |
⊢ ( Base ‘ 𝑆 ) ∈ V |
15 |
14
|
a1i |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( Base ‘ 𝑆 ) ∈ V ) |
16 |
|
simplr |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → 𝑠 = 𝑆 ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( SubRing ‘ 𝑠 ) = ( SubRing ‘ 𝑆 ) ) |
18 |
|
simpll |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → 𝑖 = 𝐼 ) |
19 |
|
oveq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ↾s 𝑟 ) = ( 𝑆 ↾s 𝑟 ) ) |
20 |
19
|
ad2antlr |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑠 ↾s 𝑟 ) = ( 𝑆 ↾s 𝑟 ) ) |
21 |
18 20
|
oveq12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) |
22 |
21
|
csbeq1d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
23 |
|
ovexd |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ∈ V ) |
24 |
|
simprr |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) |
25 |
|
simplr |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → 𝑠 = 𝑆 ) |
26 |
|
simprl |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → 𝑏 = ( Base ‘ 𝑆 ) ) |
27 |
|
simpll |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → 𝑖 = 𝐼 ) |
28 |
26 27
|
oveq12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑏 ↑m 𝑖 ) = ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) |
29 |
25 28
|
oveq12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) = ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) |
30 |
24 29
|
oveq12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) = ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
31 |
24
|
fveq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( algSc ‘ 𝑤 ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) |
32 |
31
|
coeq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) ) |
33 |
28
|
xpeq1d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) |
34 |
33
|
mpteq2dv |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) |
35 |
32 34
|
eqeq12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ↔ ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) ) |
36 |
25
|
oveq1d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑠 ↾s 𝑟 ) = ( 𝑆 ↾s 𝑟 ) ) |
37 |
27 36
|
oveq12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) = ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) |
38 |
37
|
coeq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) ) |
39 |
28
|
mpteq1d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) = ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
40 |
27 39
|
mpteq12dv |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) |
41 |
38 40
|
eqeq12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
42 |
35 41
|
anbi12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
43 |
30 42
|
riotaeqbidv |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
44 |
43
|
anassrs |
⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) → ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
45 |
23 44
|
csbied |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
46 |
22 45
|
eqtrd |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
47 |
17 46
|
mpteq12dv |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
48 |
15 47
|
csbied |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
49 |
13 48
|
eqtrd |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
50 |
|
df-evls |
⊢ evalSub = ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
51 |
|
fvex |
⊢ ( SubRing ‘ 𝑆 ) ∈ V |
52 |
51
|
mptex |
⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ∈ V |
53 |
49 50 52
|
ovmpoa |
⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( 𝐼 evalSub 𝑆 ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
54 |
53
|
fveq1d |
⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) ) |
55 |
10 54
|
sylan |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) ) |
56 |
1 55
|
eqtrid |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ) → 𝑄 = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) ) |
57 |
56
|
3adant3 |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) ) |
58 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑆 ↾s 𝑟 ) = ( 𝑆 ↾s 𝑅 ) ) |
59 |
58
|
oveq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
60 |
59
|
oveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) = ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
61 |
59
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
62 |
61
|
coeq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ) |
63 |
|
mpteq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) |
64 |
62 63
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ↔ ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) ) |
65 |
58
|
oveq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) = ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) |
66 |
65
|
coeq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) ) |
67 |
66
|
eqeq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
68 |
64 67
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
69 |
60 68
|
riotaeqbidv |
⊢ ( 𝑟 = 𝑅 → ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
70 |
|
eqid |
⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
71 |
|
riotaex |
⊢ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ∈ V |
72 |
69 70 71
|
fvmpt |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
73 |
4
|
oveq2i |
⊢ ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) |
74 |
2 73
|
eqtri |
⊢ 𝑊 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) |
75 |
6
|
oveq1i |
⊢ ( 𝐵 ↑m 𝐼 ) = ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) |
76 |
75
|
oveq2i |
⊢ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) |
77 |
5 76
|
eqtri |
⊢ 𝑇 = ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) |
78 |
74 77
|
oveq12i |
⊢ ( 𝑊 RingHom 𝑇 ) = ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) |
79 |
78
|
a1i |
⊢ ( ⊤ → ( 𝑊 RingHom 𝑇 ) = ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
80 |
74
|
fveq2i |
⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
81 |
7 80
|
eqtri |
⊢ 𝐴 = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
82 |
81
|
coeq2i |
⊢ ( 𝑓 ∘ 𝐴 ) = ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
83 |
75
|
xpeq1i |
⊢ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) |
84 |
83
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) |
85 |
8 84
|
eqtri |
⊢ 𝑋 = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) |
86 |
82 85
|
eqeq12i |
⊢ ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ↔ ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) |
87 |
4
|
oveq2i |
⊢ ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) |
88 |
3 87
|
eqtri |
⊢ 𝑉 = ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) |
89 |
88
|
coeq2i |
⊢ ( 𝑓 ∘ 𝑉 ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) |
90 |
|
eqid |
⊢ ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) |
91 |
75 90
|
mpteq12i |
⊢ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) = ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) |
92 |
91
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
93 |
9 92
|
eqtri |
⊢ 𝑌 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
94 |
89 93
|
eqeq12i |
⊢ ( ( 𝑓 ∘ 𝑉 ) = 𝑌 ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) |
95 |
86 94
|
anbi12i |
⊢ ( ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
96 |
95
|
a1i |
⊢ ( ⊤ → ( ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
97 |
79 96
|
riotaeqbidv |
⊢ ( ⊤ → ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
98 |
97
|
mptru |
⊢ ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
99 |
72 98
|
eqtr4di |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) = ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) ) |
100 |
99
|
3ad2ant3 |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) = ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) ) |
101 |
57 100
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) ) |