Metamath Proof Explorer


Theorem evlsval

Description: Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015) (Revised by AV, 18-Sep-2021)

Ref Expression
Hypotheses evlsval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlsval.w 𝑊 = ( 𝐼 mPoly 𝑈 )
evlsval.v 𝑉 = ( 𝐼 mVar 𝑈 )
evlsval.u 𝑈 = ( 𝑆s 𝑅 )
evlsval.t 𝑇 = ( 𝑆s ( 𝐵m 𝐼 ) )
evlsval.b 𝐵 = ( Base ‘ 𝑆 )
evlsval.a 𝐴 = ( algSc ‘ 𝑊 )
evlsval.x 𝑋 = ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) )
evlsval.y 𝑌 = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) )
Assertion evlsval ( ( 𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓𝐴 ) = 𝑋 ∧ ( 𝑓𝑉 ) = 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 evlsval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlsval.w 𝑊 = ( 𝐼 mPoly 𝑈 )
3 evlsval.v 𝑉 = ( 𝐼 mVar 𝑈 )
4 evlsval.u 𝑈 = ( 𝑆s 𝑅 )
5 evlsval.t 𝑇 = ( 𝑆s ( 𝐵m 𝐼 ) )
6 evlsval.b 𝐵 = ( Base ‘ 𝑆 )
7 evlsval.a 𝐴 = ( algSc ‘ 𝑊 )
8 evlsval.x 𝑋 = ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) )
9 evlsval.y 𝑌 = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) )
10 elex ( 𝐼𝑍𝐼 ∈ V )
11 fveq2 ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) )
12 11 adantl ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) )
13 12 csbeq1d ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) / 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) = ( Base ‘ 𝑆 ) / 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
14 fvex ( Base ‘ 𝑆 ) ∈ V
15 14 a1i ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( Base ‘ 𝑆 ) ∈ V )
16 simplr ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → 𝑠 = 𝑆 )
17 16 fveq2d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( SubRing ‘ 𝑠 ) = ( SubRing ‘ 𝑆 ) )
18 simpll ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → 𝑖 = 𝐼 )
19 oveq1 ( 𝑠 = 𝑆 → ( 𝑠s 𝑟 ) = ( 𝑆s 𝑟 ) )
20 19 ad2antlr ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑠s 𝑟 ) = ( 𝑆s 𝑟 ) )
21 18 20 oveq12d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) )
22 21 csbeq1d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
23 ovexd ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ∈ V )
24 simprr ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) )
25 simplr ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → 𝑠 = 𝑆 )
26 simprl ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → 𝑏 = ( Base ‘ 𝑆 ) )
27 simpll ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → 𝑖 = 𝐼 )
28 26 27 oveq12d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑏m 𝑖 ) = ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) )
29 25 28 oveq12d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑠s ( 𝑏m 𝑖 ) ) = ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) )
30 24 29 oveq12d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) = ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) )
31 24 fveq2d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( algSc ‘ 𝑤 ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) )
32 31 coeq2d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) )
33 28 xpeq1d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( ( 𝑏m 𝑖 ) × { 𝑥 } ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) )
34 33 mpteq2dv ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) )
35 32 34 eqeq12d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ↔ ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) )
36 25 oveq1d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑠s 𝑟 ) = ( 𝑆s 𝑟 ) )
37 27 36 oveq12d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑖 mVar ( 𝑠s 𝑟 ) ) = ( 𝐼 mVar ( 𝑆s 𝑟 ) ) )
38 37 coeq2d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) )
39 28 mpteq1d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) = ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) )
40 27 39 mpteq12dv ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) )
41 38 40 eqeq12d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) )
42 35 41 anbi12d ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
43 30 42 riotaeqbidv ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) → ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
44 43 anassrs ( ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) → ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
45 23 44 csbied ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
46 22 45 eqtrd ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
47 17 46 mpteq12dv ( ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
48 15 47 csbied ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( Base ‘ 𝑆 ) / 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
49 13 48 eqtrd ( ( 𝑖 = 𝐼𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) / 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
50 df-evls evalSub = ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ( Base ‘ 𝑠 ) / 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ( 𝑖 mPoly ( 𝑠s 𝑟 ) ) / 𝑤 ( 𝑓 ∈ ( 𝑤 RingHom ( 𝑠s ( 𝑏m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥𝑟 ↦ ( ( 𝑏m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠s 𝑟 ) ) ) = ( 𝑥𝑖 ↦ ( 𝑔 ∈ ( 𝑏m 𝑖 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
51 fvex ( SubRing ‘ 𝑆 ) ∈ V
52 51 mptex ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) ∈ V
53 49 50 52 ovmpoa ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( 𝐼 evalSub 𝑆 ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) )
54 53 fveq1d ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) ‘ 𝑅 ) )
55 10 54 sylan ( ( 𝐼𝑍𝑆 ∈ CRing ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) ‘ 𝑅 ) )
56 1 55 eqtrid ( ( 𝐼𝑍𝑆 ∈ CRing ) → 𝑄 = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) ‘ 𝑅 ) )
57 56 3adant3 ( ( 𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) ‘ 𝑅 ) )
58 oveq2 ( 𝑟 = 𝑅 → ( 𝑆s 𝑟 ) = ( 𝑆s 𝑅 ) )
59 58 oveq2d ( 𝑟 = 𝑅 → ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) = ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) )
60 59 oveq1d ( 𝑟 = 𝑅 → ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) = ( ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) )
61 59 fveq2d ( 𝑟 = 𝑅 → ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) )
62 61 coeq2d ( 𝑟 = 𝑅 → ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) )
63 mpteq1 ( 𝑟 = 𝑅 → ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) )
64 62 63 eqeq12d ( 𝑟 = 𝑅 → ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ↔ ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) )
65 58 oveq2d ( 𝑟 = 𝑅 → ( 𝐼 mVar ( 𝑆s 𝑟 ) ) = ( 𝐼 mVar ( 𝑆s 𝑅 ) ) )
66 65 coeq2d ( 𝑟 = 𝑅 → ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) )
67 66 eqeq1d ( 𝑟 = 𝑅 → ( ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) )
68 64 67 anbi12d ( 𝑟 = 𝑅 → ( ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
69 60 68 riotaeqbidv ( 𝑟 = 𝑅 → ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
70 eqid ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
71 riotaex ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ∈ V
72 69 70 71 fvmpt ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) ‘ 𝑅 ) = ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
73 4 oveq2i ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly ( 𝑆s 𝑅 ) )
74 2 73 eqtri 𝑊 = ( 𝐼 mPoly ( 𝑆s 𝑅 ) )
75 6 oveq1i ( 𝐵m 𝐼 ) = ( ( Base ‘ 𝑆 ) ↑m 𝐼 )
76 75 oveq2i ( 𝑆s ( 𝐵m 𝐼 ) ) = ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) )
77 5 76 eqtri 𝑇 = ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) )
78 74 77 oveq12i ( 𝑊 RingHom 𝑇 ) = ( ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) )
79 78 a1i ( ⊤ → ( 𝑊 RingHom 𝑇 ) = ( ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) )
80 74 fveq2i ( algSc ‘ 𝑊 ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) )
81 7 80 eqtri 𝐴 = ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) )
82 81 coeq2i ( 𝑓𝐴 ) = ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) )
83 75 xpeq1i ( ( 𝐵m 𝐼 ) × { 𝑥 } ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } )
84 83 mpteq2i ( 𝑥𝑅 ↦ ( ( 𝐵m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) )
85 8 84 eqtri 𝑋 = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) )
86 82 85 eqeq12i ( ( 𝑓𝐴 ) = 𝑋 ↔ ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) )
87 4 oveq2i ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar ( 𝑆s 𝑅 ) )
88 3 87 eqtri 𝑉 = ( 𝐼 mVar ( 𝑆s 𝑅 ) )
89 88 coeq2i ( 𝑓𝑉 ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) )
90 eqid ( 𝑔𝑥 ) = ( 𝑔𝑥 )
91 75 90 mpteq12i ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) = ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) )
92 91 mpteq2i ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( 𝐵m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) )
93 9 92 eqtri 𝑌 = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) )
94 89 93 eqeq12i ( ( 𝑓𝑉 ) = 𝑌 ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) )
95 86 94 anbi12i ( ( ( 𝑓𝐴 ) = 𝑋 ∧ ( 𝑓𝑉 ) = 𝑌 ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) )
96 95 a1i ( ⊤ → ( ( ( 𝑓𝐴 ) = 𝑋 ∧ ( 𝑓𝑉 ) = 𝑌 ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
97 79 96 riotaeqbidv ( ⊤ → ( 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓𝐴 ) = 𝑋 ∧ ( 𝑓𝑉 ) = 𝑌 ) ) = ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) )
98 97 mptru ( 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓𝐴 ) = 𝑋 ∧ ( 𝑓𝑉 ) = 𝑌 ) ) = ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑅 ) ) ) ) = ( 𝑥𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑅 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) )
99 72 98 eqtr4di ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) ‘ 𝑅 ) = ( 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓𝐴 ) = 𝑋 ∧ ( 𝑓𝑉 ) = 𝑌 ) ) )
100 99 3ad2ant3 ( ( 𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) RingHom ( 𝑆s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆s 𝑟 ) ) ) ) = ( 𝑥𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆s 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔𝑥 ) ) ) ) ) ) ‘ 𝑅 ) = ( 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓𝐴 ) = 𝑋 ∧ ( 𝑓𝑉 ) = 𝑌 ) ) )
101 57 100 eqtrd ( ( 𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓𝐴 ) = 𝑋 ∧ ( 𝑓𝑉 ) = 𝑌 ) ) )