Step |
Hyp |
Ref |
Expression |
1 |
|
evlsval.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsval.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsval.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) |
4 |
|
evlsval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
evlsval.t |
⊢ 𝑇 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) |
6 |
|
evlsval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
7 |
|
evlsval.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
8 |
|
evlsval.x |
⊢ 𝑋 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) |
9 |
|
evlsval.y |
⊢ 𝑌 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
10 |
1 2 3 4 5 6 7 8 9
|
evlsval |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ℩ 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
12 |
|
simp1 |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐼 ∈ 𝑍 ) |
13 |
4
|
subrgcrng |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
15 |
|
simp2 |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑆 ∈ CRing ) |
16 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐼 ) ∈ V |
17 |
5
|
pwscrng |
⊢ ( ( 𝑆 ∈ CRing ∧ ( 𝐵 ↑m 𝐼 ) ∈ V ) → 𝑇 ∈ CRing ) |
18 |
15 16 17
|
sylancl |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑇 ∈ CRing ) |
19 |
6
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
20 |
19
|
3ad2ant3 |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ⊆ 𝐵 ) |
21 |
20
|
resmptd |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ) |
22 |
21 8
|
eqtr4di |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) = 𝑋 ) |
23 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
24 |
23
|
3ad2ant2 |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑆 ∈ Ring ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) |
26 |
5 6 25
|
pwsdiagrhm |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐵 ↑m 𝐼 ) ∈ V ) → ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) ) |
27 |
24 16 26
|
sylancl |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) ) |
28 |
|
simp3 |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
29 |
4
|
resrhm |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) ∈ ( 𝑈 RingHom 𝑇 ) ) |
30 |
27 28 29
|
syl2anc |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) ∈ ( 𝑈 RingHom 𝑇 ) ) |
31 |
22 30
|
eqeltrrd |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑋 ∈ ( 𝑈 RingHom 𝑇 ) ) |
32 |
6
|
fvexi |
⊢ 𝐵 ∈ V |
33 |
|
simpl1 |
⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑍 ) |
34 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ 𝐼 ∈ 𝑍 ) → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑔 : 𝐼 ⟶ 𝐵 ) ) |
35 |
32 33 34
|
sylancr |
⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑔 : 𝐼 ⟶ 𝐵 ) ) |
36 |
35
|
biimpa |
⊢ ( ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑔 : 𝐼 ⟶ 𝐵 ) |
37 |
|
simplr |
⊢ ( ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑥 ∈ 𝐼 ) |
38 |
36 37
|
ffvelrnd |
⊢ ( ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐵 ) |
39 |
38
|
fmpttd |
⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) : ( 𝐵 ↑m 𝐼 ) ⟶ 𝐵 ) |
40 |
|
simpl2 |
⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ CRing ) |
41 |
5 6 11
|
pwselbasb |
⊢ ( ( 𝑆 ∈ CRing ∧ ( 𝐵 ↑m 𝐼 ) ∈ V ) → ( ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ↔ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) : ( 𝐵 ↑m 𝐼 ) ⟶ 𝐵 ) ) |
42 |
40 16 41
|
sylancl |
⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ↔ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) : ( 𝐵 ↑m 𝐼 ) ⟶ 𝐵 ) ) |
43 |
39 42
|
mpbird |
⊢ ( ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ) |
44 |
43 9
|
fmptd |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑌 : 𝐼 ⟶ ( Base ‘ 𝑇 ) ) |
45 |
2 11 7 3 12 14 18 31 44
|
evlseu |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ∃! 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) ) |
46 |
|
riotacl2 |
⊢ ( ∃! 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) → ( ℩ 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) ) ∈ { 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ∣ ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) } ) |
47 |
45 46
|
syl |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ℩ 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) ) ∈ { 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ∣ ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) } ) |
48 |
10 47
|
eqeltrd |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ { 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ∣ ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) } ) |
49 |
|
coeq1 |
⊢ ( 𝑚 = 𝑄 → ( 𝑚 ∘ 𝐴 ) = ( 𝑄 ∘ 𝐴 ) ) |
50 |
49
|
eqeq1d |
⊢ ( 𝑚 = 𝑄 → ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ↔ ( 𝑄 ∘ 𝐴 ) = 𝑋 ) ) |
51 |
|
coeq1 |
⊢ ( 𝑚 = 𝑄 → ( 𝑚 ∘ 𝑉 ) = ( 𝑄 ∘ 𝑉 ) ) |
52 |
51
|
eqeq1d |
⊢ ( 𝑚 = 𝑄 → ( ( 𝑚 ∘ 𝑉 ) = 𝑌 ↔ ( 𝑄 ∘ 𝑉 ) = 𝑌 ) ) |
53 |
50 52
|
anbi12d |
⊢ ( 𝑚 = 𝑄 → ( ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) ↔ ( ( 𝑄 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑄 ∘ 𝑉 ) = 𝑌 ) ) ) |
54 |
53
|
elrab |
⊢ ( 𝑄 ∈ { 𝑚 ∈ ( 𝑊 RingHom 𝑇 ) ∣ ( ( 𝑚 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑚 ∘ 𝑉 ) = 𝑌 ) } ↔ ( 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ∧ ( ( 𝑄 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑄 ∘ 𝑉 ) = 𝑌 ) ) ) |
55 |
48 54
|
sylib |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ∧ ( ( 𝑄 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑄 ∘ 𝑉 ) = 𝑌 ) ) ) |