Step |
Hyp |
Ref |
Expression |
1 |
|
evlsvar.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsvar.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) |
3 |
|
evlsvar.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
evlsvar.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
5 |
|
evlsvar.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
evlsvar.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
7 |
|
evlsvar.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
8 |
|
evlsvar.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
9 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly 𝑈 ) |
10 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) |
11 |
|
eqid |
⊢ ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) = ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) |
12 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) |
13 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
14 |
1 9 2 3 10 4 11 12 13
|
evlsval2 |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ∈ ( ( 𝐼 mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ∧ ( ( 𝑄 ∘ ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄 ∘ 𝑉 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
15 |
5 6 7 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ( 𝐼 mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ∧ ( ( 𝑄 ∘ ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄 ∘ 𝑉 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
16 |
15
|
simprrd |
⊢ ( 𝜑 → ( 𝑄 ∘ 𝑉 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) |
17 |
16
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝑉 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑋 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) |
19 |
3
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
20 |
7 19
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
21 |
9 2 18 5 20
|
mvrf2 |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
22 |
21
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
23 |
|
fvco2 |
⊢ ( ( 𝑉 Fn 𝐼 ∧ 𝑋 ∈ 𝐼 ) → ( ( 𝑄 ∘ 𝑉 ) ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) ) |
24 |
22 8 23
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝑉 ) ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑋 ) ) |
26 |
25
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
27 |
|
ovex |
⊢ ( 𝐵 ↑m 𝐼 ) ∈ V |
28 |
27
|
mptex |
⊢ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ∈ V |
29 |
26 13 28
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑋 ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
30 |
8 29
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑋 ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
31 |
17 24 30
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |