Step |
Hyp |
Ref |
Expression |
1 |
|
evlsvarpw.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsvarpw.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsvarpw.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) |
4 |
|
evlsvarpw.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
5 |
|
evlsvarpw.x |
⊢ 𝑋 = ( ( 𝐼 mVar 𝑈 ) ‘ 𝑌 ) |
6 |
|
evlsvarpw.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
7 |
|
evlsvarpw.p |
⊢ 𝑃 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) |
8 |
|
evlsvarpw.h |
⊢ 𝐻 = ( mulGrp ‘ 𝑃 ) |
9 |
|
evlsvarpw.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
10 |
|
evlsvarpw.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
11 |
|
evlsvarpw.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) |
12 |
|
evlsvarpw.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
13 |
|
evlsvarpw.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
14 |
|
evlsvarpw.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
16 |
|
eqid |
⊢ ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar 𝑈 ) |
17 |
6
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
18 |
13 17
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
19 |
2 16 15 10 18 11
|
mvrcl |
⊢ ( 𝜑 → ( ( 𝐼 mVar 𝑈 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) |
20 |
5 19
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
21 |
1 2 3 4 6 7 8 9 15 10 12 13 14 20
|
evlspw |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ 𝐻 ) ( 𝑄 ‘ 𝑋 ) ) ) |