Metamath Proof Explorer


Theorem evlsvarpw

Description: Polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by SN, 21-Feb-2024)

Ref Expression
Hypotheses evlsvarpw.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlsvarpw.w 𝑊 = ( 𝐼 mPoly 𝑈 )
evlsvarpw.g 𝐺 = ( mulGrp ‘ 𝑊 )
evlsvarpw.e = ( .g𝐺 )
evlsvarpw.x 𝑋 = ( ( 𝐼 mVar 𝑈 ) ‘ 𝑌 )
evlsvarpw.u 𝑈 = ( 𝑆s 𝑅 )
evlsvarpw.p 𝑃 = ( 𝑆s ( 𝐵m 𝐼 ) )
evlsvarpw.h 𝐻 = ( mulGrp ‘ 𝑃 )
evlsvarpw.b 𝐵 = ( Base ‘ 𝑆 )
evlsvarpw.i ( 𝜑𝐼𝑉 )
evlsvarpw.y ( 𝜑𝑌𝐼 )
evlsvarpw.s ( 𝜑𝑆 ∈ CRing )
evlsvarpw.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evlsvarpw.n ( 𝜑𝑁 ∈ ℕ0 )
Assertion evlsvarpw ( 𝜑 → ( 𝑄 ‘ ( 𝑁 𝑋 ) ) = ( 𝑁 ( .g𝐻 ) ( 𝑄𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 evlsvarpw.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlsvarpw.w 𝑊 = ( 𝐼 mPoly 𝑈 )
3 evlsvarpw.g 𝐺 = ( mulGrp ‘ 𝑊 )
4 evlsvarpw.e = ( .g𝐺 )
5 evlsvarpw.x 𝑋 = ( ( 𝐼 mVar 𝑈 ) ‘ 𝑌 )
6 evlsvarpw.u 𝑈 = ( 𝑆s 𝑅 )
7 evlsvarpw.p 𝑃 = ( 𝑆s ( 𝐵m 𝐼 ) )
8 evlsvarpw.h 𝐻 = ( mulGrp ‘ 𝑃 )
9 evlsvarpw.b 𝐵 = ( Base ‘ 𝑆 )
10 evlsvarpw.i ( 𝜑𝐼𝑉 )
11 evlsvarpw.y ( 𝜑𝑌𝐼 )
12 evlsvarpw.s ( 𝜑𝑆 ∈ CRing )
13 evlsvarpw.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
14 evlsvarpw.n ( 𝜑𝑁 ∈ ℕ0 )
15 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
16 eqid ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar 𝑈 )
17 6 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
18 13 17 syl ( 𝜑𝑈 ∈ Ring )
19 2 16 15 10 18 11 mvrcl ( 𝜑 → ( ( 𝐼 mVar 𝑈 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑊 ) )
20 5 19 eqeltrid ( 𝜑𝑋 ∈ ( Base ‘ 𝑊 ) )
21 1 2 3 4 6 7 8 9 15 10 12 13 14 20 evlspw ( 𝜑 → ( 𝑄 ‘ ( 𝑁 𝑋 ) ) = ( 𝑁 ( .g𝐻 ) ( 𝑄𝑋 ) ) )