| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evlsvarpw.q | ⊢ 𝑄  =  ( ( 𝐼  evalSub  𝑆 ) ‘ 𝑅 ) | 
						
							| 2 |  | evlsvarpw.w | ⊢ 𝑊  =  ( 𝐼  mPoly  𝑈 ) | 
						
							| 3 |  | evlsvarpw.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑊 ) | 
						
							| 4 |  | evlsvarpw.e | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 5 |  | evlsvarpw.x | ⊢ 𝑋  =  ( ( 𝐼  mVar  𝑈 ) ‘ 𝑌 ) | 
						
							| 6 |  | evlsvarpw.u | ⊢ 𝑈  =  ( 𝑆  ↾s  𝑅 ) | 
						
							| 7 |  | evlsvarpw.p | ⊢ 𝑃  =  ( 𝑆  ↑s  ( 𝐵  ↑m  𝐼 ) ) | 
						
							| 8 |  | evlsvarpw.h | ⊢ 𝐻  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 9 |  | evlsvarpw.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 10 |  | evlsvarpw.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 11 |  | evlsvarpw.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐼 ) | 
						
							| 12 |  | evlsvarpw.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 13 |  | evlsvarpw.r | ⊢ ( 𝜑  →  𝑅  ∈  ( SubRing ‘ 𝑆 ) ) | 
						
							| 14 |  | evlsvarpw.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 16 |  | eqid | ⊢ ( 𝐼  mVar  𝑈 )  =  ( 𝐼  mVar  𝑈 ) | 
						
							| 17 | 6 | subrgring | ⊢ ( 𝑅  ∈  ( SubRing ‘ 𝑆 )  →  𝑈  ∈  Ring ) | 
						
							| 18 | 13 17 | syl | ⊢ ( 𝜑  →  𝑈  ∈  Ring ) | 
						
							| 19 | 2 16 15 10 18 11 | mvrcl | ⊢ ( 𝜑  →  ( ( 𝐼  mVar  𝑈 ) ‘ 𝑌 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 20 | 5 19 | eqeltrid | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 21 | 1 2 3 4 6 7 8 9 15 10 12 13 14 20 | evlspw | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝑁  ↑  𝑋 ) )  =  ( 𝑁 ( .g ‘ 𝐻 ) ( 𝑄 ‘ 𝑋 ) ) ) |