Step |
Hyp |
Ref |
Expression |
1 |
|
evlsvarsrng.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsvarsrng.o |
⊢ 𝑂 = ( 𝐼 eval 𝑆 ) |
3 |
|
evlsvarsrng.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) |
4 |
|
evlsvarsrng.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
evlsvarsrng.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
6 |
|
evlsvarsrng.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐴 ) |
7 |
|
evlsvarsrng.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
8 |
|
evlsvarsrng.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
9 |
|
evlsvarsrng.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
10 |
1 3 4 5 6 7 8 9
|
evlsvar |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
11 |
2 5
|
evlval |
⊢ 𝑂 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → 𝑂 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( 𝑉 ‘ 𝑋 ) ) ) |
14 |
3
|
a1i |
⊢ ( 𝜑 → 𝑉 = ( 𝐼 mVar 𝑈 ) ) |
15 |
|
eqid |
⊢ ( 𝐼 mVar 𝑆 ) = ( 𝐼 mVar 𝑆 ) |
16 |
15 6 8 4
|
subrgmvr |
⊢ ( 𝜑 → ( 𝐼 mVar 𝑆 ) = ( 𝐼 mVar 𝑈 ) ) |
17 |
5
|
ressid |
⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
18 |
7 17
|
syl |
⊢ ( 𝜑 → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
19 |
18
|
eqcomd |
⊢ ( 𝜑 → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝜑 → ( 𝐼 mVar 𝑆 ) = ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ) |
21 |
14 16 20
|
3eqtr2d |
⊢ ( 𝜑 → 𝑉 = ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) = ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( 𝑉 ‘ 𝑋 ) ) = ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) ) |
24 |
|
eqid |
⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) |
25 |
|
eqid |
⊢ ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) = ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) |
26 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) |
27 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
28 |
5
|
subrgid |
⊢ ( 𝑆 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
29 |
7 27 28
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
30 |
24 25 26 5 6 7 29 9
|
evlsvar |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝐵 ) ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝐵 ) ) ‘ 𝑋 ) ) = ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
31 |
13 23 30
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝑉 ‘ 𝑋 ) ) ) |
32 |
10 31
|
eqtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝑉 ‘ 𝑋 ) ) ) |